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Abstract

This research explores the potential benefits of rain gardens, a form of nature-based solutions
(NbS) for urban stormwater management in Kecskemét, Hungary. An experimental rain garden
was established using plants with varying drought tolerances to capture rainwater from a single-
family house roof. This garden was monitored for a year to assess its rainwater retention
capacity and observe plant development and survival. Concurrently, we identified areas within
Kecskemét prone to flash floods from heavy rainfall, demarcating promising locations for rain
garden conversion. Our primary goal was to identify applicable plant species and quantify how
much rainfall could be retained in rain gardens. Our results show that drought-tolerant plants
(e.g. Festuca amethystina, Festuca pallens glauca) perform better in the dry conditions typical
of Kecskemét. Based on our calculation, the possible rainwater retention is about 1,500 m3,
with 60 planned rain gardens. These findings suggest that the widespread urban application of
rain gardens, as a nature-based solution, can significantly contribute to mitigating flash floods
and enhancing urban resilience to extreme weather events.
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Introduction
Urban areas worldwide face mounting pressure on water resources as climate change intensifies
(Loscher et al., 2017). The spread of impermeable surfaces due to urbanization disrupts the
natural water cycle, curtailing infiltration and evaporation crucial for maintaining stable urban
microclimates (Osheen & Singh, 2019). This disruption triggers several issues: excessive runoff
reduces water available for evapotranspiration, leading to soil desiccation and stressed green
spaces (Osheen & Singh, 2019), while heavy rainfall events increasingly cause flash floods on
sealed surfaces, washing pollutants into water systems. These challenges underscore the need
for sustainable solutions that emulate natural water management processes.

The "sponge city" concept (Zevenbergen et al., 2018) is one of the possible solutions,
which integrates green spaces, rain gardens, storage facilities, and green roofs into urban
landscapes (Jiang et al., 2018; Nguyen et al., 2019). Blue-green infrastructure builds on sponge
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city principles, tackling water retention and drainage by merging ecological and engineering
approaches (Wang et al., 2022; Zareba et al., 2022; Zhang et al., 2022). This involves surface
elements for permanent or temporary water retention and subsurface storage to manage
stormwater sustainably (Rosenberger et al., 2021; Tokarczyk et al., 2017). Across Europe,
escalating rainfall intensity strains traditional drainage systems, often designed for outdated
historical rainfall patterns (Ashley et al., 2005; De Toffol et al., 2009). In response, European
urban planning increasingly incorporates the principles of nature-based solutions (NbS) through
the implementation of blue-green infrastructure to manage excess rainfall, mitigate floods, and
improve urban livability (Liu et al., 2019). The NbS concept refers to strategies that use natural
features and processes to address societal challenges — such as climate change, food and water
security, and natural disasters — while preserving biodiversity and promoting sustainable
development (O’Hogain & McCarton, 2018). Specific examples of such green infrastructure,
like rain gardens and constructed wetlands, are critical NbS applications that support broader
climate adaptation efforts in Hungary by reducing runoff volume into sewers (Ge et al., 2023,
Liao et al., 2017; Siwiec et al., 2018).

Arain garden is a landscaped depression designed to collect, treat, soak, filter, and retain
rainwater from roofs, driveways, or streets, using modified soil and specific plants
(Boguniewicz-Zablocka & Capodaglio, 2020; Kelly et al., 2020). As urbanization continues,
innovative and cost-effective solutions are vital to combat rising flash flood risks, which occur
when intense, short-duration rainfall overwhelms the ground's infiltration capacity, especially
in sealed urban environments. While traditional sewer systems are costly to build and maintain,
rain gardens offer a more economical alternative, though their effectiveness depends on local
soil and watershed characteristics (Boguniewicz-Zablocka & Capodaglio, 2020; Ishimatsu et
al., 2017; O’Donnell et al., 2017).

Climate change impacts are particularly pronounced in Hungary's "Homokhatsag"
region (Danube-Tisza Interfluve), including the city of Kecskemét. Rising temperatures and
extreme weather have led to decades of desiccation. In Kecskemét, a city without natural
surface watercourses, these extremes manifest as flash floods during heavy rains, especially in
low-lying areas with extensive paving or impermeable saline soils (Luo et al., 2018;
Papagiannaki et al., 2017). Kecskemét's 2021 Climate Strategy outlines rainwater management
principles focused on water retention: 1) reducing runoff coefficients by increasing green areas,
2) property-level regulations for rainwater retention, and 3) promoting rainwater utilization
(infiltration, evaporation) (Kecskemét Megyei Jogu Véros, 2021).

Rain gardens align perfectly with these goals. The increasing frequency of flash floods
(e.g., 2011, 2015, 2018, 2020, 2021, 2024) disrupts traffic, causes public dissatisfaction, and
inflicts financial damage, particularly on city-center retail. Rapid water drainage post-flood
further worsens drought conditions. Thus, in the water-scarce Homokhatség, retaining water
and reducing water use are important goals.

Research on rain gardens in semi-arid regions like Homokhéatsag is limited, though
examples from the US and Mediterranean exist (Herrera et al., 2017; Jiang et al., 2015). This
study's novelty lies in its specific Central Eastern European context, demonstrating that even
plants not typically listed for rain gardens can be viable. It highlights the potential of
incorporating local native vegetation, regardless of initial drought or moisture tolerance
assessments. In drier climates, selecting species with lower water needs yet resilient to
occasional flooding is particularly beneficial.

Therefore, this research aims to answer:

1. What insights can an experimental rain garden offer regarding suitable plant species and
water retention capacity?

2. Which green areas in a flood-exposed sample area of Kecskemét are suitable for rain
garden development?



3. How much water could potentially be retained by rain gardens in this study area?

Data and Methods

Study Area

Kecskemét (population 108,120 in 2022) is situated in the Homokhatsag region (Figure 1), an
area highly vulnerable to climate change and exposed to aridification. The city's economy, once
dominated by agriculture, is increasingly industrial, highlighted by a large automotive plant
established in the early 2010s, now occupying 450 hectares.

The selected study area, encompassing approximately 2 hectares, is situated in the city
center of Kecskemét. A key topographical feature of this site is its lower elevation relative to
the adjacent urban landscape. Consequently, it functions as a natural catchment, accumulating
surface runoff from the surrounding areas. This characteristic renders the area particularly
susceptible to inundation by flash floods during heavy rainfall events, making it a pertinent
location for studying rainwater retention strategies. The land cover is predominantly
characterized by impervious surfaces, such as urban pavement, typical of a residential zone.
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Figure 1. The location of Kecskemét in Hungary and the study area

The average temperature in Kecskemét rose by 3.5°C between 1991 and 2019 (KSH,
2024). The urban heat island effect is pronounced in densely built-up areas and the paved inner
city, where summer night temperatures often remain above 20°C. July-August average



temperatures reach 30°C, with highs up to 37°C. Climate models project extreme aridity for the
region by century's end, with frequent severe droughts (Kecskemét Megyei Jogu Varos, 2021).
However, climate change here doesn't necessarily mean less rainfall overall. Average
annual precipitation has varied significantly in the last 15 years, from 359 mm to 881 mm
(Figure 2). Rainfall distribution is uneven; while it might seem drier, especially during summer
heatwaves, a substantial portion of precipitation often falls in large, intense events. In
Kecskemét's multi-story residential and densely built-up areas, stormwater flows into a closed
drainage network. The city's separated sewer system prevents rainwater from overwhelming
the smaller-capacity sewage network during extreme events. Kecskemét has 20 water
catchments: 1-16 (2,121 hectares total) drain into the Csukasér main channel, while 17-20 flow
into an upper stormwater reservoir (Kecskemét Megyei Jogu Varos, 2020). With typical annual
rainfall of 500-550 mm, approximately 12 million m? of rainwater and wastewater are drained
from the city annually.
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Figure 2. The average annual amount of precipitation and the number of rainfall days by year
in Kecskemét (2013-2023)
Source: Central Statistical Office (KSH)

The flood issues from extreme weather are concentrated in our selected study area
(Figure 1). This area acts as a catchment for surrounding higher-lying streets, frequently
flooding (approx. 10 mm/h) during intense downpours (Figure 3). HungaroMet (met.hu) data
indicate such events are increasingly common: over the last 50 years, daily summer
precipitation amounts have risen by over 2 mm, while the number of rainy days has fallen
(HungaroMet, 2024).

Figure 3. Flash floods in the study area (Végé street) in 2020 June (left) and August (right)
Source: Levente Szekeres




Methodology

The study employs a two-pronged approach to answer the research questions. First, a small
experimental rain garden was created to test plant viability. Second, we identified a nearly
140,000 m? downtown Kecskemét area exposed to flooding to assess its potential for rain
garden implementation. Figure 4 outlines the research phases.
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Figure 4. Flow diagram showing the connection between different research phases

Creation of a Rain Garden and Determination of Water Retention Capacity

An experimental rain garden was established in a family house garden in Kecskemet to collect
roof runoff. The soil comprised a 50/50 mix of original soil and loose, high-organic-content
compost from the local water utility, Bacsviz Ltd. Selected plant species were planted, and bare
soil was mulched with wood chips to conserve moisture, reduce transpiration, prevent erosion,
and inhibit weeds. The experiment ran from May 2022 to May 2023. This one year was
sufficient for testing the viability of the plants. However, monitoring of the vegetation in the
experimental rain garden has continued since then.

Plant species selection was informed by Central and Eastern European literature and the
Homokhatsag's climate. We chose species commonly used in rain gardens (Carex nigra,
Lythrum salicaria, Mentha aquatica, Symphytum officinale) and species tolerant of drier
conditions (Tradescantia virginiana, Echinacea purpurea, Festuca amethystina, Festuca
pallens glauca) (Kasprzyk et al., 2022; Bortolini & Zanin, 2018; Laukli et al., 2022; Vaculova



& Stepankova, 2017). Plant viability was assessed by monitoring plant cover and health (leaf
water availability, disease symptoms, growth) relative to their initial state.

Soil water retention capacity was the focus of soil testing, as permeability is key for rain
gardens. The Hungarian Detailed Soil Physical and Hydrological Database (MARTHA) (Mako
et al., 2010) indicates that Kecskemét's city center and the experimental site have sandy soils
with high organic matter (Arenosols and Cambisols). Thus, detailed lab tests for soil type were
deemed unnecessary, as practical compost ratios (40-50%) are standard. The soil properties of
hypothetical urban rain gardens were assumed to match the experimental garden.

To evaluate water retention, one liter of an air-dry mixture of original sandy soil and
compost was saturated with water. The amount percolating within 30 minutes was measured.
Water began percolating after 29 seconds, with 0.3 liters dripping through by the end. Since
1.48 kg of the soil-compost mix is one liter, 1 liter of the mixture can hold 0.55 liters of water.
The 3.04 m2 experimental rain garden, filled with 1.51 m3 of this soil-compost mix, had a water
retention capacity of approximately 833 liters. This equates to 0.28 m3 retention per square
meter for a 60 cm deep rain garden. These results were extrapolated to estimate the potential
capacity of urban rain gardens. Increasing rain garden depth proportionally enhances retention;
our calculations represent a lower bound. The calculation was performed using the following
formula (1):

V= (Z)smal (1)
, where a is the width of the base of the trapezoidal depression formed for the rain
garden =50 cm,
c is the width of the top surface of the trapezoid = 80 cm,
m is the depth of the experimental rain garden = 60 cm,
| is the length of the rain garden = 380 cm.

The product of these measurements provides the volume of the depression, which we
converted to cubic meters. The resulting volume was 1.48 m3. Based on these measurements,
the area of the rain garden was calculated to be 3.04 m2.

Designation of Potential Locations for Rain Gardens and Determination of Water
Retention Capacity

In the study area, we explored creating rain gardens in existing green spaces to collect runoff
from paved surfaces and roofs. Green areas were identified manually in QGIS using MePAR
(Agricultural Parcel Identification System) high-resolution orthophotos. The city's Digital
Elevation Model (DEM) helped determine main flow directions, allowing us to select green
surfaces lower than their surroundings to act as catchments. Public utility and drainage network
locations were also considered using city GIS data. Potential rain garden sites were then
manually designated, followed by field surveys for finalization. The study area was divided into
five main sectors (catchment areas) (Figure 5), further subdivided into 12 sub-sectors for
efficient analysis. Results are presented by the main sectors.
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Figure 5. Five sector division of the study area

Within each sector, the estimated size of planned rain gardens was determined based on
paved/unpaved surface ratios, allowing calculation of potential water retention. Comparing this
with rainfall data (May 2022 — May 2023, Figure 6), we estimated the portion of annual rainfall
retainable. We also calculated the capacity to absorb specific events (e.g., 10 mm rain in one
hour).
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Figure 6. The average monthly rainfall in Kecskemét between May 2022 and May 2023.
Source: Central Statistical Office (https://www.ksh.hu/stadat_files/kor/hu/kor0056.html)

Extreme rainfall is increasingly frequent in Kecskemet. For instance, on August 4-5,
2020, nearly 70 mm fell in 12 hours (Netatmo weather station data), with several 30-minute



periods seeing 15-20 mm (Figure 7). Such events highlight the inadequacy of existing drainage
and the need for better stormwater management.
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Figure 7. The amount of precipitation measured by Netatmo meteorological stations within 12
hours at various points in Kecskemét (August 4-5, 2020)

Results

Vegetation Viability in the Experimental Rain Garden

The experimental rain garden, with its two plant groups, functioned efficiently within six
months. It successfully collected and retained roof runoff, even during heavy downpours and
persistent rain. The permeability test showed the sandy soil-compost mix retained 0.55
liters/dm3. For our 3.04 m?2 garden, this meant a retention capacity of 0.83 m3 (approx. 0.28
m3/m?2). This value was used to calculate the potential of urban rain gardens (assuming 60 cm
depth, see Table 1). Retained water benefits not only garden plants but also nearby vegetation,
promoting balanced water distribution.

Table 1. Comprehensive parameters of planned rain gardens by sector

Total .
Area of Number area of Potential Floor
Area|green of planned water area of Number Population
Sector planned | " _: retention |, . of
(ha) |surfaces|’ . rain ..~ | buildings |, . .. (person)
) rain capacity 5 buildings
(m?) gardens | /3 (m?)
gardens (m?) (m°)
1 23 4610 |9 2,580 |722 2,233 4 63
2 2.6 |2,445 15 1,160 324 2,847 1 603
3 12 (1,423 |20 3375 |93 0 0 0
4 3.1 |[3,560 10 963 269 8,847 40 559
5 5.1 {1,200 6 455 127 21,131 112 1,100
Total | 14.3 |13,238 |60 5,495.5 1,535 35,058 | 157 2,325

Source: Compilation by own

The compost mixture provided adequate nutrients, evidenced by rapid plant recovery
and growth. Soil life revived with the appearance of arthropods, and plants thrived (Figure 8).
After an initial 200-liter watering at planting (absorbed by the soil mix), plants were watered



only twice during the extremely dry summer (August 4 and 8, 2022). Otherwise, they relied on
retained rainwater, developing primarily without additional irrigation.

Figure 8. The development of plants in the experimental rain garden (image "A" shows the
plants after planting, while the image “B” shows them four months later)

Lythrum salicaria, initially questionable for survival, grew vigorously and bloomed,
demonstrating its vitality (Figure 9).

L ¥

Figure 9. Lythrum salicaria after planted (arrived almost without any leaves) (A) and its
development two weeks (B) and two months later (C)

Plant species recommended by Vaculova and Stepankova (2017) and Laukli et al.
(2022) showed less vigor in our setup. Carex nigra survival without irrigation is doubtful.
Mentha aquatica appeared more durable. Drought-tolerant plants like Festuca amethystine
proved more viable, all surviving without watering.

Water Retention Capacity of Planned Rain Gardens

Using GIS data for the study area, we calculated the total green surface area and determined the
number and area of potential rain gardens. Assuming a 60 cm depth, the 60 planned rain gardens
could retain over 1,500 m3 of rainwater. This capacity roughly equates to simultaneously
collecting 10 mm of rainfall across the area. Importantly, runoff from higher-lying areas,



especially to the northeast (Figure 10), and water collected by existing stormwater drainage,
must also be considered.
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Our measurements suggest a properly designed rain garden system in the study area
could efficiently store a significant portion of rainwater from a major event (e.g., 10 mm/day).
During more intense storms (e.g., 10 mm/hour), the system would reduce the load on the
drainage network, allowing it to handle runoff more effectively. Table 1 details the
characteristics and potential water retention per sector.

On the base of our measurements we classified the rain gardens by required implementation
effort into three types (Figure 11):

e Type 1 (40 sites): Created on existing green surfaces with minor earthworks, no

pavement disruption.

e Type 2 (8 sites): Smaller green areas, lower absorption capacity, but minimal land

conversion.

e Type 3 (12 sites): Require major construction (pavement/sidewalk/curb modification),

higher cost.

Of 60 potential sites, 40 (two-thirds) are Type 1, implementable without significant cost or
construction (Table 2, Figure 11). Eight Type 2 sites, though offering limited space for rain
gardens, also avoid major land conversion. Twelve Type 3 sites require significant modification
and higher costs. Notably, 50% of Type 3 sites are in Sector 5, making it the most challenging
for creating adequate retention capacity. This sector is also densely built-up with limited green
space, meaning residential plots offer little contribution to water retention.
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Table 2. The suitability of different sectors for accommodating rain gardens

Suitability for rain garden
Sector Typel |Type2 |Type3
1 4 5
2 8 3 4
3 20
4 8 2
5 6
Total 40 8 12

Source: Compilation by own

Discussion

The findings from the experimental rain garden and the Kecskemét study area indicate that this
type of green infrastructure can significantly mitigate problems caused by flash floods. The
potential installation of 60 rain gardens could retain approximately 1,500 m3 of water, sufficient
to prevent flash floods even from a 100 mm rainfall event. This aligns with global research: a
Kyoto study showed 60% stormwater retention (Zhang et al., 2019; Zhang et al., 2020), a Xi'an
study found runoff coefficients reduced to near zero (Tang et al., 2016), and Montreal examples
demonstrated up to 62% retention (Autixier et al., 2014) and Chinese models also predict high
retention rate (53-100%) (Hou et al., 2020). Based on the latest calculations from Taiwan (Chen
etal., 2024; Chen et al., 2025), if rain gardens were created on 10% of public spaces, they could
collect approximately 48,000 to 710,000 m® of rainwater annually. In Taiwanese climate, this
amount would be sufficient to meet the annual irrigation water needs of approximately 85 km?
of vegetation-covered area and reduce annual runoff by 16%. Gdansk is one of the first Polish



cities where rain gardens have been widely adopted. Here, rain gardens can handle 72% of the
precipitation events studied (Burszta-Adamiak et al., 2023). Thus, according to the above
findings, rain gardens are part of low-impact development (LID) systems that can effectively
manage flash floods caused by heavy rainfall as part of urban stormwater management (Gulshad
etal., 2024).

Studies identify diverse plant species suitable for rain gardens, with considerable
heterogeneity even within Central Europe. For instance, a Nitra, Slovakia study prioritized
ornamental plants preferring wetter conditions (e.g., Liatris spicata) (Bortolini & Zanin, 2018).
In contrast, tests in colder Northern European climates included species like Hemerocallis cv.
(Laukli et al., 2022), also common in Central European gardens. At the same time, plants that
are known as indoor ornamental plants in Central Europe (e.g., Chlorophytum comosum,
Dracaena reflexa, Ruellia simplex, Sansevieria trifasciata) are also viable in rain gardens under
tropical conditions. These species showed good adaptability and a healthier morphological
appearance in rain gardens compared to specimens living in traditional gardens (Chaves et al.,
2025).

This highlights that optimal plant choices vary regionally, necessitating local studies
(Dogmusoz, 2024; Bruner et al., 2023). Consequently, different cities might need varied
technological solutions and plant selections (Greksa et al., 2023; Suleiman et al., 2020), which
also impacts construction and maintenance costs and economic viability (Kasprzyk, 2022).
Rain gardens have recently appeared in Kecskemét (2021/2022), proving effective. The Gerlice
Street project (18 rain gardens) and the Shostakovich Street rain garden have successfully
prevented previous flooding and waterlogging. These examples support our findings and
indicate that converting green areas to rain gardens is an effective tool in urban development to
solve complex environmental problems. A New York City study found traditional gray
infrastructure 22% more expensive to build and maintain than blue-green alternatives for
stormwater management (City of New York, 2011).

Wider application of our results may be limited by local, primarily climatic conditions.
Thus, local studies are vital to determine soil water retention and ideal soil-compost ratios. Plant
suitability requires preliminary viability testing, as poorly performing rain gardens can reduce
public acceptance. Success is more likely with active local population involvement and
awareness of benefits. Thus, while rain gardens offer significant potential, adaptation to local
conditions and community needs is key for long-term success.

Finally, several limitations need consideration. The experimental garden was in a single-
family home setting, not fully capturing urban complexities. While soil permeability was tested,
other properties like organic matter content also affect long-term performance. The one-year
duration may not capture long-term performance changes or challenges like soil compaction or
clogging. The study focused on water retention and flood mitigation, with limited attention to
other benefits like biodiversity enhancement or carbon sequestration.

Conclusions
This research explored rain gardens as elements of blue-green infrastructure, focusing on their
role in urban climate adaptation and flash flood prevention. Our experimental rain garden in
Kecskemét tested two plant groups: species typically found in wetter environments and
drought-tolerant species (less tested in rain gardens previously). The results show that these
drought-tolerant species plants are viable and applicable in sandy soil-based rain gardens. While
plants adapted to wetter conditions were less well developed though still usable. Wetter-habitat
plants would likely perform better in clay-rich soils.

To investigate the possible application benefits of rain gardens, we selected a flash-
flood-sensitive area in Kecskemét. Using QGIS, we analyzed topography and utility networks,
supplemented by field observations, to identify potential green areas for conversion to rain



gardens. We found that constructing 60 rain gardens in the 140,000 m2 study area could retain
at least 1,500 m3 (1.5 million liters) of rainwater from average rainfall. During heavier
precipitation, this would reduce the load on local stormwater drainage, decreasing flash flood
likelihood. Water stored would gradually absorb into the urban soil, cooling the environment
through vegetation evapotranspiration. The sustainable use of green-blue infrastructure
worldwide can enhance rainwater management efficiency, making cities more resilient.
Municipalities should embrace nature-based solutions, e.g. rain gardens over
conventional methods. Development plans should prioritize them, and the local dwellers needs
clear information on the benefits of rain garden compared to traditional drainage.
A follow-up study will examine Kecskemet’s existing rain gardens’ long-term hydrological
performance, soil development and ecological succession under the changing climate
conditions, which will further support urban stormwater management planning.
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