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ABSTRACT

Urban air pollution, particularly from fine particulate matter (PM2.5 and PM10), poses crit-
ical environmental and public health challenges in rapidly urbanizing regions. This study 
presents a multiscale, seasonal analysis of the relationship between Green Infrastruc-
ture (GI) landscape characteristics and PM concentrations in Delhi, India. Using high-reso-
lution Sentinel-2 imagery (2019–2021) and air quality data from 39 Central Pollution Con-
trol Board (CPCB) monitoring stations, we quantified 15 GI characteristics across five spatial 
scales (0.5–2.5 km) using NDVI. Empirical Bayesian Kriging was applied for spatial interpola-
tion of PM values, and Otsu’s thresholding was used to delineate vegetated areas. Principal 
Component Analysis (PCA) and regression models revealed that compositional metrics—
such as Class Area (CA) and Percentage of Landscape (PLAND)—showed consistent nega-
tive correlations with PM2.5 and PM10 levels across all scales and seasons. Configuration 
metrics, including Largest Patch Index (LPI), Edge Density (ED), and Aggregation Index (AI), 
exhibited scale- and season-specific influences, with stronger ef fects observed at broad-
er spatial scales during winter and autumn. The findings suggest that both the quantity and 
spatial arrangement of urban vegetation significantly af fect local air quality. The study un-
derscores the need for scale-aware, evidence-based GI planning as a nature-based solution, 
supporting India’s airshed-level approach to urban pollution management. These insights 
of fer practical guidance for urban policymakers and planners aiming to enhance air quality 
through strategic green infrastructure design.
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Introduction

The globe saw an upsurge in human populations dur-
ing the Industrial Revolution in the nineteenth century, 
which has exacerbated the pace of urbanization since then 
(Grimm et al., 2008; Singh et al., 2020). Countries’ popula-
tion projections report that over 95% of the global popula-
tion’s net growth occurs in the cities of developing coun-
tries (Jiang & O’Neill, 2017; UNDESA, 2019). In addition, 
nearly all of the world’s new megacities (defined as hav-
ing a population of more than 10 million people) are lo-

cated in the developing world (UNDESA, 2019). Globally, 
rapid economic expansion and unregulated urbanisation 
have altered land surface attributes, including roughness, 
thermal inertia, and albedo (AlKhaled et al., 2020; Zhou et 
al., 2019). Such factors further impact regional meteoro-
logical parameters like temperature, wind speed, and air 
quality (Agarwal & Tandon, 2010; Grimm et al., 2008). In 
recent decades, fast economic expansion and unregulat-
ed urbanization have brought unprecedented negative an-
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thropogenic stress in the urban environment regarding air 
quality, which has become a growing concern in dense-
ly populated regions of developed as well as developing 
countries (Singh et al., 2020; Song et al., 2018; Molina et al., 
2012; Impacts, n.d.; Mathers et al., 1999). Megacities usu-
ally have significant PM10 and PM2.5 levels from fossil fuel 
combustion, fugitive dust, and biomass burning from in-
dustry, transportation, and densely populated areas. The 
WHO reported that outdoor air pollution (PM) kills about 
4 million people yearly, accounting for 11.65% of worldwide 
deaths (WHO, 2018). Air pollution, the most significant 
health concern posed by the environment, is costing the 
world a total of $8.1 trillion, which is comparable to 6.1% 
of the global GDP (Li, 2016; UNEP, 2018; Li, 2017; Molina 
et al., 2012). Throughout the 1950s and 1960s, Particulate 
Matter (PM) pollution experienced a notable expansion 
in European and North American locations. Its severity, 
meanwhile, has been rising in developing countries, in-
cluding India and China (Rohde & Muller, 2015; Yale & Co-
lumbia Universities, 2022). In India, during the last dec-
ades, air pollution in urban regions has become a major 
urban environmental issue (Gulia et al., 2015a; Chelani 
et al., 2001; Ramani et al., 2019; Central Pollution Control 
Board, 2003; Gupta, 2008; Ministry of Environment & For-
ests, 1987; Kushwaha & Nithiyanandam, 2019; Menon & 
Sharma, 2021; Ramaiah & Avtar, 2019; Kotharkar & Baga-
de, 2018). The 2021 assessment by IQAir, a Swiss organi-
sation that assesses air quality by measuring PM concen-
tration, placed India as the fifth most polluted nation out 
of 117 countries. It also identified Delhi as the most sig-
nificant metropolitan agglomeration with the most haz-
ardous air in the world (IQAir, 2021). In India, it has been 
estimated that the average economic impact of PM air pol-
lution alone amounts to 5.4 per cent of the country’s year-
ly GDP (Greenpeace, 2020). Furthermore, it is accountable 
for roughly one million deaths each year and contributes 
to 980,000 preterm births (Chatterji, 2020). It is estimat-
ed that in 2021, the deaths of 40,000 children under the age 
of five were directly linked to PM pollution (IQAir, 2021). 
According to studies conducted during the COVID-19 
pandemic, being exposed to particulate matter (PM2.5 & 
PM10) increases the likelihood of acquiring the virus and 
experiencing more severe symptoms, including mortality, 
if infected (Role, 2021; Soni, 2021). The effects of urban is-
sues extend to the urban, regional, continental, and glob-
al scales. Large cities pose challenges in managing a ris-
ing population, yet they also pose potential opportunities 
to manage environmental issues such as air pollution sus-
tainably. 

In the last 20 years, extensive research has been con-
ducted on PM10 and PM2.5, which are typically consid-
ered harmful to people’s health (Kumar et al., 2019; Man-
nucci et al., 2015; Leão et al., 2023; Ramadan et al., 2025). A 
number of studies examined the relationship between PM 

pollution and human health, finding that it was associat-
ed with sharp rises in respiratory and cardiovascular dis-
eases (Morelli et al., 2016; Lavigne et al., 2016; Peters, 2011; 
Sangkham et al., 2024). Numerous studies have examined 
the spatial distribution of particulate matter of varying siz-
es at regional or national scales, along with the inf luencing 
variables (Sharma et al., 2014; Luo et al., 2020). Source ap-
portionment of particles is another crucial field of study fo-
cused on characterizing different sources of fine-particu-
late air pollution (Banerjee et al., 2015; Sharma et al., 2014; 
Guttikunda et al., 2014; Nautiyal et al., 2025; Meng et al., 
2025). Global cities have studied and suggested many ways 
to lower PM pollution. These include using cleaner ener-
gy, changing the way the economy grows, limiting driving, 
and working together at the regional or national level (Gut-
tikunda et al., 2019; Gulia et al., 2015b; Dhingra, 2020; Wu et 
al., 2017). Identifying sustainable approaches by using na-
ture-based solutions by which PM pollution can be reduced 
nowadays has become a priority for researchers and urban 
planners (Zhang et al., 2024; Power et al., 2023; Tomson et 
al., 2025). For example, research in 10 US cities found that 
trees eliminated 4.7 t to 64.5 t of PM2.5 yearly (Nowak et al., 
2006). Similarly, Leicester, UK, research found that trees 
and grasses remove 14 tons of PM2.5 annually (Jeanjean et 
al., 2016; Jeanjean et al., 2017). Local PM declines were de-
tected in Sydney’s urban woodlands by Irga et al. (2015). 
Mcdonald et al. (2007) simulated PM10 concentrations in 
the West Midlands and Glasgow (UK) and showed that tree 
cover might cut PM by 10%. Kumar et al. (2019) suggest-
ed in their study that green infrastructure (GI) as a physi-
cal barrier may lower PM10 by 60%, 59%, 16%, 63%, and 77% 
compared to control circumstances. Due to the preponder-
ance of qualitative research and the scarcity of quantitative 
studies, much of the attention is placed on a micro-scale 
configuration and species typology of green infrastructure 
(Yu & Jingyi, 2019; Im, 2019; Bartesaghi-Koc et al., 2018; 
Ouyang et al., 2021; Urban Climate Lab, 2016). Recently, 
there has been growing interest in understanding how the 
landscape level or urban macro scale composition and con-
figuration of green infrastructure (GI) affect the delivery 
of ecosystem services, including pollution control (Anders-
son-Sköld et al., 2018; Selmi et al., 2016; Wu et al., 2018; Lei 
et al., 2018; Lei et al., 2021; Ramyar & Zarghami, 2017; Tom-
son et al., 2025; Barwise, 2023; Yao et al., 2025). “Green In-
frastructure” (GI) is a natural and semi-natural open place 
around cities that provides ecological services to the sur-
roundings (Calfapietra et al., 2019; Bartesaghi-Koc et al., 
2019; NWGITT, 2008; Ramyar & Zarghami, 2017). GI is a 
novel name, but its concept originates in planning and con-
servation initiatives dating back 150 years. The concept was 
prompted by two precedents: integrating parks and oth-
er green spaces for people and linking natural areas to im-
prove biodiversity and reduce habitat fragmentation (Ben-
edict et al., 2006; Schneekloth, 2000; US EPA, OW, 2010; 
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Tallis et al., 2015; Sinnett et al., 2015; Calfapietra & Cheru-
bini, 2019). To investigate and quantify the effects of GI on 
many sustainability advantages, researchers have attempt-
ed to develop a general categorisation of GI based on mul-
tiple benefits through quantitative and qualitative studies 
at local to regional scales. GI at the regional scale can have 
substantial spatial heterogeneity because various land cov-
er and land-use types exhibit distinctive surface features. 
In urban form and urban landscape study, landscape met-
rics are algorithms that measure patches, classes, and ag-
gregation of landscape patterns (Zheng et al., 2020; Wu et 
al., 2015; Lei et al., 2018; Ahern, 2007; Fan et al., 2015; Guo et 
al., 2021). Landscape metrics may efficiently illustrate the 
GI characteristics (Mcgarigal, 2015). They have been exten-
sively utilised to explore the patterns of greenspace land-
scapes and their effects on PM reduction (Lei et al., 2021; 
Guo et al., 2021; Lei et al., 2018; Wu et al., 2015; Myint et al., 
2015). 

Recent studies have shown that the fragmentation of 
urban greenspace has a significant impact on particulate 
matter pollution. An investigation conducted by Lei et al. 
in a Chinese metropolis indicated that the composition 
of greenspace had a more significant impact on lowering 
PM pollution at shorter distances. In contrast, the config-
uration of greenspace was more significant at longer dis-
tances (Lei et al., 2018; Lei et al., 2021; Barwise, 2023). Fur-

ther, a study demonstrated, that PM2.5 concentration and 
landscape evenness/fragmentation are strongly connect-
ed (Wu et al., 2015; Barwise, 2023; Zhang et al., 2024). There 
are limited or no studies on particulate matter pollution 
in relation to green infrastructure landscape patterns in 
Indian cities. Most, if not all, of these studies, adopted a 
FRAGSTAT model, which represents a landscape in three 
levels of matrices, i.e., patch, class, and landscape metrics, 
with further segmentation in area-edge, shape, and ag-
gregations (Forman, 1995; McGarigal, 1995; McGarigal et 
al., 2002; Cao et al., 2024; Jiang et al., 2023). This study aims 
to propose landscape-level Green Infrastructure (GI) as a 
potentially sustainable approach to explain the variation 
of the seasonal PM concentration in an urban area. The 
study has direct alignment with the government approach 
of managing air quality and urban risk at the air-shed level 
contrary to the local scale by integrating green infrastruc-
ture as a potential nature-based solutions (CleanAirAsia, 
2016; CPCB, 2013). The objectives of this study were to in-
vestigate the relationship between the landscape pattern 
of GI and PM concentration at multiple scales. The contri-
butions of this study include the following: it investigates 
the role of green infrastructure  composition and config-
uration in indicating particulate matter concentration in 
Delhi; it offers recommendations for the green infrastruc-
ture planning of urban redevelopment in the city.

Materials and Methodology

Study Area
The city is noted for its air pollution, with air quality levels 
routinely surpassing the World Health Organization’s rec-
ommended thresholds, creating significant health hazards 
for its inhabitants (REF: IQ Air 2023). The World Health Or-
ganization (WHO) produced a report in 2014 identifying 
Delhi as the most polluted city in the world, citing air pol-
lution as the city’s most pressing problem (Saraswat et 
al., 2017; Jalan, 2019; Jain et al., 2021; Guttikunda & Cal-
ori, 2013). The Delhi government has taken various initi-
atives for long-term and seasonal measures to combat air 
pollution. For example, the Graded Response Action Plan 
(GRAP) developed by the Central Pollution Control Board 
(CPCB), the odd-even vehicle policy in 2016. The govern-
ment also periodically shut down coal-based thermal pow-
er facilities and developed real-time air monitoring devic-
es and the Green Delhi App for citizens to report pollution 
levels. In addition to regulatory and technological meas-
ures, the Delhi government has increasingly adopted na-
ture-based solutions to combat air pollution and improve 
urban resilience. The Delhi Development Authority (DDA) 
and Forest Department have created additional city for-
ests and green belts to filter air and cool the city. They have 
also pushed vertical gardens and green walls along f lyo-

vers and metro pillars to provide vegetation to crowded 
urban areas. The government intended to maximise the 
potential of green infrastructure by implementing sever-
al programmes like the smart city mission, the India Fo-
rum for Nature-based Solutions, the AMRUT project, etc. 
Delhi has undergone unprecedented urbanisation over the 
past few decades and manifested high GI and air pollution 
heterogeneity. Thus, Delhi serves as a good model for ad-
dressing the following questions: (1) Do the GI landscape 
patterns affect the Particulate matter concentration level? 
Furthermore, (2) if so, how do the PM10 or PM2.5 vary by 
different GI spatial patterns and scales? 

Data
PM2.5/10 Measurements: 39 Air Quality Monitoring Sta-
tions (AQMS) are deployed throughout the city, as shown 
in Figure 1. All the stations are uniformly distributed in 
the city. These monitoring stations provide hourly and dai-
ly mean PM2.5/10 pollution concentration data. The data 
protocol suggests that each monitoring station has a spa-
tially representative radius of 1 to 5 sq. km (CPCB, 2015). 
These AQMS are located at a height of 3 to 15 m on the street 
or roadsides. PM2.5/10 concentration and weather data at 
all 39 AQMS from the year 2019 to 2021 were obtained from 
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the Central Pollution Control Board (https://app.cpcbc-
cr.com/ccr/#/caaqm-dashboard-all/caaqm-landing). Sea-
sonal mean data sets for the PM concentration were cal-
culated based on the respective months of the seasons. 
Geographical Information System (GIS) based interpola-
tion techniques have been used to map the concentration 
of particulate matter in interest. The interpolation tech-
nique is used to predict values in the cells in a raster when 
there are limited sample data points (Shareef et al., 2016; 
Bezyk et al., 2021; Singh & Tyagi, 2013a; Londoño-Ciro & 
Cañón-Barriga, 2015).The study used geostatic analysis in-
terpolation techniques called Empirical Bayesian kriging; 
this method estimates cell values by averaging the sample 
point value in the neighbourhood of each processing cell. 
The standardised R square value for the maps is between 
0.94 and 0.99. Data-driven traditional Empirical Bayesian 
kriging predicts unsampled locations. Parallel processing 
helps Empirical Bayesian kriging forecast large datasets 
and improve prediction accuracy. The method can provide 
accurate and reliable predictions of geographical data.

Green Infrastructure (GI) characterization
GI in an urban region, including land surfaces covered by 
trees, shrubs, and herbaceous vegetation, has long been 

known to inf luence local atmospheric PM concentrations 
and Temperature. GI changes PM concentrations through 
direct and indirect ways (Hofman et al., 2016) at plant lev-
el and landscape level, including capturing particulates 
on leaf surfaces (Zhang et al., 2021b)cities are implement-
ing greening plans to satisfy the demands of residents 
for a more habitable environment. Because the relation-
ship between the supply and demand of ecosystem ser-
vices (ESs and altering urban temperature, atmospheric 
turbulence, and wind f low through “evapotranspiration” 
(Soydan, 2020; Liu & Shen, 2014). To obtain the landscape 
patterns of GI, which are reported in several scholar-
ly works, 10 m spatial resolution data of Sentinel-2 (Year 
2019, 20202 and 2021) from the Google Earth engine repos-
itory is used to delineate normalized difference vegetation 
index (NDVI) for 2019, 2020, and 2021; the study used the 
mean season-wise data for the specific month of the re-
spective years. NDVI is a popular way to measure the cov-
er and condition of vegetation in urban areas using remote 
sensing (Thiis et al., 2018). The threshold values of the sea-
sonal NDVI maps were calculated using Otsu’s threshold-
ing technique, defining the condition  of vegetative cov-
er (Grover & Singh, 2015; Gašparović & Dobrinić, 2021; 
Ashok et al., 2021). Otsu’s approach minimises vegetation 
and non-vegetation pixel variation (Dissanayake et al., 
2018)(Sathyakumar et al., 2020). The difference between 
near-infrared and red-light ref lectance is used to calculate 
NDVI values ranging from -1 to 1. Otsu’s approach anal-
yses histograms of NDVI values to identify an appropri-
ate threshold t that divides pixel values into vegetation and 
non-vegetation classes. This is done by finding  a  thresh-
old value  that maximizes class variance σ2

b(t), defined as 
σ2

b(t) = ω1(t)ω2(t)[μ1(t)−μ2(t)]2, where ωi(t) and μi(t) are the 
class probabilities and means of the two classes separat-
ed by threshold t. Finally, the resulting binary classifica-
tion designates non-vegetation as pixels with NDVI < t and 
vegetation as pixels with NDVI ≥ t. It adjusts to the data 
patterns of each scene, making it strong for extensive or 
automated vegetation mapping without needing manual 
set limits for NDVI-based land cover analysis. After select-
ing the optimal threshold value mentioned in Table 1, bi-
naries the image by putting all pixels with intensity levels 
over the threshold into the vegetation while converting all 
other pixels into the  non-vegetation class (Sathyakumar 
et al., 2020). Finally, landscape-level metrics measured GI 
landscape composition and configuration features. Land-
scape-level metrics were widely used to describe GI pat-
terns (Lei et al., 2018; Heather R. McCarthy, 2011; Mcgari-
gal, 2015). In this study, fifteen landscape-level metrics 
were used to measure landscape patterns of GI, as listed in 
Table 2. The landscape patterns included five composition 
metrics and ten configuration metrics (McGarigal, 1995). 
These metrics have been utilised in various landscape pat-
tern-ecological process articles (Zhou et al., 2011; Li et al., 

Figure 1. Delhi city Boundary and Location of all CPCB 
monitoring stations in Delhi and Location of monitoring 
stations selected for the study
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2013; Chen et al., 2019; Wu et al., 2018; Liang & Gong, 2020; 
Soydan, 2020). These parameters were selected based on 
three criteria: (1) theoretically and practically significant; 
(2) readily computed and explained; and (3) minimum rep-
etition. 

FRAGSTATS was used to quantify  landscape metrics 
using NDVI maps for ten plots. In this study, we used CP-
CB’s ten air quality monitoring stations (AQMS) as central 
points to create five square plots per site ranging in size 
from 0.5 km x 0.5 km to 2.5 km x 2.5 km for each monitor-
ing site, as shown in Figure 2. The following were taken 
into consideration while choosing the locations: (i) choos-
ing monitoring sites with consistently high pollution levels 
(all seasons), (ii) avoiding areas with water bodies or other 
potential modifiers, (iii) Unique Local Climate Zone (built-
up morphology) with variables land use and (iv) there was 
no primary emission source present. The smallest sample 
plot is 0.5 km x 0.5 km, which is ideal for urban micro-scale 
urban forestry study, while 2.5 km x 2.5 km is ideal for ur-
ban local scale. NDVI maps were validated using 100 ran-
domly chosen points and reference data from Google im-
ages; the confusion matrix suggests 92% seasonal average 
accuracy with a seasonal average kappa coefficient val-
ue of 94% for the vegetation classifications. Finally, the 

seasonal data sets of the PM (PM10, PM2.5) concentra-
tion, along with the quantified GI landscape characteris-
tics, were employed in the Principal Component Analysis 
(PCA) to analyse the variation of variables. PCA is a statis-
tical technique commonly used in environmental studies 
to identify key factors by isolating those that account for 
the most variance in the data.

Table 1. Season-wise threshold value for Binarization of NDVI 
Image

Season Threshold value for Binarization 
of NDVI Image

Summer (April to June) 0.29

Monsoon (July to August) 0.17

Autumn (September to October) 0.29

Winter (November to January) 0.17

Spring (February to March) 0.24

Data analysis
Green infrastructure features that have similar properties 
are clustered together using a hierarchical cluster analy-
sis method (Yu et al., 2017; Grafius et al., 2018). Then, at 
first, we performed a one-way analysis of variance (ANO-

Table 2. Green Infrastructure characterization at landscape level
Typology Metrics Type GI Characterization Equation (Unit)

Composition

Area

CA CA= aij
1

10,000
⎛

⎝
⎜

⎞

⎠
⎟

j=1

n

∑

PLAND PLAND = Pi

aijj=1

n
∑

A
100( )

LPI LPI =
max aij( )

A
100( )

Shape

SH_MN SH _ MN =
1
n

X ei
mineii=1

n

∑

LSI LSI = .25E*
A

Configuration Aggregation

COH COH = 1−
Pij

*
j=1

n
∑

Pij
* aij

*
j=1

n
∑

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1− 1
Z

⎡
⎣⎢

⎤
⎦⎥

−1
⋅ 100( )

NP NP =ni

PD PD =
N
A

10,000( ) 100( )
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VA) to examine whether there were significant differenc-
es among the PM2.5 and PM10 concentrations among the 
four seasons (Ginevan & Splistone, 2004; Vieira et al., 2018; 
Wu et al., 2018). We compared the PM2.5 and PM10 con-
centrations using the least significant difference test, with 
a significance level of p < 0.05. All values were reported 
as mean ± standard error. Second, we used the principal 
component analysis (PCA) to investigate the relationship 
between the PM2.5/10 concentration with the characterise 
and quantified green infrastructure at landscape level at 
scale variation from micro (0.5 km x 0.5 km) to local (2.5 
km x 2.5 km) urban scale. PCA is the preferred approach 
for studying variation in environmental parameters with 
vegetation (Zhang et al., 2016; Yang et al., 2011; Ou et al., 
2017; Andrew et al., 2012; Wu et al., 2018; Elhaik, 2022). It 
can help researchers understand the underlying ecological 

processes that drive these interactions. In addition, it can 
help to assess the GI composition and configuration impact 
on environmental variables such as PM2.5/10 (Chen & Dai, 
2022; Heo et al., 2020), and assist in determining environ-
mental factors variation in relation to quantified GI pat-
terns (Wu et al., 2018; Jolliffe et al., 2016). It has been uti-
lised in ecological research in tropical forests, grasslands, 
and wetlands to examine the link between GI and envi-
ronmental factors (Kenkel, 2006; Yang et al., 2011; Rezaei & 
Millard-Ball, 2023). Climate change, land use change, and 
other anthropogenic disturbances have also  been stud-
ied using it (Franklin et al., 1995; Jolliffe et al., 2016; Vie-
ira et al., 2015). Finally, PCA regression was used to eval-
uate the relative impact of the five-composition measures 
and ten-configuration metrics of explanatory variables on 
PM2.5/10 concentration at each scale.

Typology Metrics Type GI Characterization Equation (Unit)

Configuration Aggregation

CLUMPY CLUMPY =

Gi −Pi
1−Pi

for Gi ≥ Pi

Gi −Pi
1−Pi

for Gi < Pi;Pi ≥0.5

Pi −Gi
−Pi

for Gi < Pi;Pi ≥0.5

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

ENN_MN ENN _ MN =d in km( )

AI AI = gii
max gii

⎛

⎝
⎜

⎞

⎠
⎟Pi

i=1

m

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

100( )

SDI SDI =− Pi ⋅ ln Pi( )
i=1

m

∑

SEI SEI
P P

m

ln

ln
i ii

m

1∑ ( )
=
− ⋅

=

ED ED =
E
A

10,000( )

TE TE = E
Note: TOTAL AREA (CA); PERCENTAGE OF LANDSCAPE (PLAND); LARGEST PATCH INDEX (LPI); MEAN SHAPE 
INDEX (SH_MN); LARGEST SHAPE INDEX (LSI); PATCH COHESION INDEX (COH); NUMBER OF PATCH (NP); PATCH 
DENSITY (PD); CLUMPINESS (CLUMPY); MEAN NEAREST NEIGHBOR DISTANCE (ENN_MN); AGGREGATION INDEX 
(AI); SHANNON’S DIVERSITY INDEX (SDI); SHANNON’S EVENNESS INDEX (SEI); TOTAL EDGE (TE); EDGE DENSITY 
(ED); (ref: McGarigal, 1995; McGarigal, 2003)
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(A-1) (B-1) (C-1)

(D-1) (E-1)
Google Earth Image of the site Ashok 

Vihar (Delhi) Monitoring Stations

Green Infrastructure Characterization mapping for all the seasons and multiscale buf fer at Ashok Vihar (Delhi) 
Monitoring Stations

(A-2) (B-2) (C-2)

(D-2) (E-2)
Google Earth Image of the site Anand 

Vihar (Delhi) Monitoring Stations

Green Infrastructure Characterization mapping for all the seasons and multiscale buf fer at Anand Vihar (Delhi) 
Monitoring Stations

Figure 2. GI characterisation mapping for the selected study site in Delhi and buf fer region depicting 0.5km 
(the inner square plot), 1km, 1.5km, 1.5km, 2km, and 2.5km (the outer square plot), A1-10: Spring Season; B1-10: 
Summer Season; C1-10: Monsoon Season; D1-10: Autumn Season; E1-10: Winter Season
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(A-3) (B-3) (C-3)

(D-3) (E-3)

Google Earth Image of the site 
Dwarka-Sector 8 (Delhi) Monitoring 

Stations

Green Infrastructure Characterization mapping for all the seasons and multiscale buf fer at Dwarka-Sector 8 (Delhi) 
Monitoring Stations

(A-4) (B-4) (C-4)

(D-4) (E-4)

Google Earth Image of the site IHBAS, 
Dilshad Garden (Delhi) Monitoring 

Stations

Green Infrastructure Characterization mapping for all the seasons and multiscale buf fer at IHBAS, Dilshad Garden 
(Delhi) Monitoring Stations

Figure 2. GI characterisation mapping for the selected study site in Delhi and buf fer region depicting 0.5km 
(the inner square plot), 1km, 1.5km, 1.5km, 2km, and 2.5km (the outer square plot), A1-10: Spring Season; B1-10: 
Summer Season; C1-10: Monsoon Season; D1-10: Autumn Season; E1-10: Winter Season (continued)
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(A-5) (B-5) (C-5)

(D-5) (E-5)
Google Earth Image of the site Lodhi 

Road (Delhi) Monitoring Stations

Green Infrastructure Characterization mapping for all the seasons and multiscale buf fer at Lodhi Road (Delhi) 
Monitoring Stations

(A-6) (B-6) (C-6)

(D-6) (E-6)
Google Earth Image of the site 

Mundka (Delhi) Monitoring Stations

Green Infrastructure Characterization mapping for all the seasons and multiscale buf fer at Mundka (Delhi) 
Monitoring Stations

Figure 2. GI characterisation mapping for the selected study site in Delhi and buf fer region depicting 0.5km 
(the inner square plot), 1km, 1.5km, 1.5km, 2km, and 2.5km (the outer square plot), A1-10: Spring Season; B1-10: 
Summer Season; C1-10: Monsoon Season; D1-10: Autumn Season; E1-10: Winter Season (continued)
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(A-7) (B-7) (C-7)

(D-7) (E-7)
Google Earth Image of the site Okhla 
Phase-2 (Delhi) Monitoring Stations

Green Infrastructure Characterization mapping for all the seasons and multiscale buf fer at Okhla Phase-2 (Delhi) 
Monitoring Stations

(A-8) (B-8) (C-8)

(D-8) (E-8)
Google Earth Image of the site R K 
Puram (Delhi) Monitoring Stations

Green Infrastructure Characterization mapping for all the seasons and multiscale buf fer at R K Puram (Delhi) 
Monitoring Stations

Figure 2. GI characterisation mapping for the selected study site in Delhi and buf fer region depicting 0.5km 
(the inner square plot), 1km, 1.5km, 1.5km, 2km, and 2.5km (the outer square plot), A1-10: Spring Season; B1-10: 
Summer Season; C1-10: Monsoon Season; D1-10: Autumn Season; E1-10: Winter Season (continued)
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(A-9) (B-9) (C-9)

(D-9) (E-9)
Google Earth Image of the site Rohini 

(Delhi) Monitoring Stations

Green Infrastructure Characterization mapping for all the seasons and multiscale buf fer at Rohini (Delhi) Monitoring 
Stations

(A-10) (B-10) (C-10)

(D-10) (E-10)
Google Earth Image of the Shadipur 

(Delhi) Monitoring Stations

Green Infrastructure Characterization mapping for all the seasons and multiscale buf fer at Shadipur (Delhi) 
Monitoring Stations

Legend

  

Figure 2. GI characterisation mapping for the selected study site in Delhi and buf fer region depicting 0.5km 
(the inner square plot), 1km, 1.5km, 1.5km, 2km, and 2.5km (the outer square plot), A1-10: Spring Season; B1-10: 
Summer Season; C1-10: Monsoon Season; D1-10: Autumn Season; E1-10: Winter Season (continued)
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Result

Clustering GI characteristics
Landscape metrics are often directly deployed as in-
dependent variables to explore the effects of landscape 
patterns on air pollution. Many of these metrics exhib-
it strong correlations; therefore, certain metrics must be 
excluded from the full model to prevent multicollinearity. 
Hierarchical Cluster Analysis (HCA) helps identify uncor-
related landscape descriptors without requiring a priori 
decisions about which metrics to include or exclude. Fig-
ure 3 shows a dendrogram depicting the hierarchical clus-
tering of GI characteristics. The variables were grouped via 
a distance-based method to find fundamental structural 
links. Metrics with comparable spatial patterns have been 
shown to cluster at reduced linkage distances, as demon-
strated with CA and PLAND, as well as ENN_MN (Euclid-
ean Nearest Neighbour Mean Distance) and CLUMPY, 
which form compact clusters. As the distance between 
clusters grows, they gradually merge, which shows that 
measure groups are less alike overall. It has been observed 
that highly correlated clusters contain CA–PLAND, TE-ED 
and NP-PD. A relatively mid-level correlated cluster con-
tains ENN_MN-CLUMPY and SH_MN-{LSI-(TE-ED)} as 
shown in dendrogram Figure 3.

Seasonal Dif ferences in Particulate Matter (PM) 
Pollution

The findings of an analysis of variance (ANOVA) revealed 
that there were significant differences (p < 0.05) between the 
PM10/2.5 concentrations during four distinct seasons. Both 
PM2.5 and PM10 concentrations were at their highest dur-
ing the winter season, whereas both PM2.5 and PM10 con-
centrations were at their lowest level during the summer. It 

was discovered that the PM10/2.5 concentration in autumn 
was much higher than what was recorded in the spring. 
Possible reasons for significant f luctuations during the four 
seasons may include variations in air temperatures, humid-
ity levels, wind direction and speed, presence or absence of 
leaves on vegetation, and patterns of fossil energy consump-
tion. The winter season in Delhi is characterised by elevat-
ed pollution levels, which can be attributed to a combina-
tion of factors such as low temperatures, elevated humidity, 
and stagnant airf low. The circumstances are conducive to 

the trapping of pollutants in the atmosphere. In addition, 
the practice of burning agricultural residue in neighbour-
ing states significantly contributes to the increased levels 
of pollution in Delhi during the winter months, as the area 
falls within the same boundary level airshed.

Principal Component Analysis (PCA)
Using PCA, we simplify the GI landscape-characterised 
data set by lowering its dimension. First, the predictor (re-
sponse) variables (including PM2.5/10 value) and GI land-

Figure 3. HCA of Green Infrastructure Landscape metrics

Figure 4. Analysis of variance (ANOVA) of PM2.5 and PM10 
concentrations in four seasons. (A) seasonal ANOVA of PM10 
concentration; (B) seasonal ANOVA of PM2.5 concentration
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scape characterise value defined as explanatory variables 
employed a centralised and standardised transformation, 
respectively. Then, the predictor variables are transformed 
into an equal number of principal components (PCs) to ob-
tain a small number of components that could explain 
most (approximately 60%–90%) of the total variation in the 
predictor variables (Singh et al., 2013b; Wu et al., 2018). The 
percentage explained of variance and the cumulative pro-
portion of variance are measures of the extent to which 
variation in PM pollution can be attributed to the presence 
of respective GI landscape characteristics along the first 
two principal component analysis (PCA) axes. The eigen-
values represent data variance along the principal com-
ponent axis. The significant component with the high-
est eigenvalue explains the most data variation. In a PCA 
analysis, eigenvalues decide how many principal com-
ponents must be retained. PCA explained 0.8204, 0.8626, 
0.8668, 0.8429 and 0.8609 of the total variation in PM2.5, 
from scale 0.5 to scale 2.5. In contrast, the same axes ex-
plained 0.8377, 0.8392, 0.8477, 0.8518 and 0.8609 of the to-
tal variances in PM10 (Table. 3). Which suggested that the 
first two axes of PCA explain 82% to 86% of the variation 
for PM2.5 and 83% to 87% for PM10 with all the explanato-
ry variables. Table 4. F-Ratio was used to test whether the 
multiscale GI characteristics affect PM pollution signifi-
cantly, and R2 represents the significance of PCA regres-
sion for the first seven PC axes, which explain more than 
90% variance of PM pollution by GI characteristics in the 
PCA model, and the R2adj was the adjusted or real value 
of the explained proportion. R2 of PM2.5 from scale 0.5 km 
to scale 2.5 km were 0.9164, 0.9434, 0.8609, 0.9645, 0.9316, 
and R2 of PM10 0.9502, 0.9287, 0.9717, 0.8566, 0.9753 respec-
tively (Table 4). The tests indicated that landscape metrics 

of GI at all scales significantly explained the total variance 
of PM2.5 and PM10. Each scale included all the fifteen GI 
characterise metrics: CA, PLAND, SHAPE_MN, LSI, TE, 
COHESION, LPI, NP, PD, CLUMPY, ENN_MN, AI, SDI, 
ED, SEI. Positive and negative correlations with PCA axes 
indicate the direction and magnitude of the association 
between the features and the variables. By interpreting 
the PCA coefficients, we can gain insight into the underly-
ing structure of the data and the relationships between the 
variables. The correlation between GI characteristics and 
the top two PCA axes of both PM2.5 and PM10 at a scale of 
0.5 km × 0.5 km to 2.5 km × 2.5 km has been shown in Table 
5. We selected the scales at which correlations between the 
PCA axes and PM concentration were significant based on 
the correlation that existed between the landscape metrics 
and the PCA axes seasonally. 

PM2.5, CA (negative), PLAND (negative), TE (negative), 
and ED (negative) related to the first axis at all scales with 
minimal variation in the correlation coefficient, whereas 
all these GI characteristics showed relatively high negative 
relation at 0.5 to 1.5 km scale. NP (positive) and PD (posi-
tive) are significantly related to the first axis at all scales, 
whereas these are negatively related to PM2.5 at 2 km and 
2.5 km. LPI (negative) and LSI (negative) were on a 1 km 
and 2.5 km scale, respectively. SH_MN (positive), ENN_
MN (positive) and CLUMPY (positive) at 1.5 km scale with 
the second axis, 2.5 km scale with the first axis and 0.5 km 
scale with the first axis, respectively. COH (negative) at 2 
km was significantly related to the second axis, whereas 
AI (positive) was significantly related at 0.5 km scale with 
the first axis. SDI (negative) and SEI (negative) with first 
and second axes, respectively, at 0.5 km and 1 km with first 
and second axes, respectively. 

Table 3. PCA of PM2.5PM2.5 and PM10PM10 concentration on multiscale plots

Scale Parameters PCA1-PM2.5 PCA2-PM2.5 PCA1-PM10 PCA2-PM10

0.5

Eigenvalues 5.528 2.774 5.567 2.895

Proportion explained of variance 0.618 0.307 0.609 0.322

Cumulative proportion of variance 0.618 0.820 0.609 0.838

1

Eigenvalues 5.413 2.549 5.375 2.536

Proportion explained of variance 0.595 0.283 0.590 0.284

Cumulative proportion of variance 0.595 0.862 0.590 0.839

1.5

Eigenvalues 5.685 2.268 5.531 2.202

Proportion explained of variance 0.634 0.262 0.623 0.257

Cumulative proportion of variance 0.634 0.866 0.622 0.847

2

Eigenvalues 5.385 3.052 5.549 3.048

Proportion explained of variance 0.643 0.346 0.652 0.344

Cumulative proportion of variance 0.643 0.842 0.652 0.851

2.5

Eigenvalues 4.834 2.499 4.871 2.370

Proportion explained of variance 0.623 0.279 0.622 0.275

Cumulative proportion of variance 0.623 0.860 0.622 0.860
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PM10, CA (negative), PLAND (negative), TE (negative), 
and ED (negative) are related to the first axis at all scales, 
with minimal variation having relatively high negative 
significant relation at a lower scale that is from 0.5 km to 
1.5 km. NP (positive) and PD (positive) are significantly re-
lated to the first axis at 0.5 km scale. LPI (negative) and LSI 
(positive) at 2.5 km with the second axis. SH_MN (nega-
tive) at 1.5 km, ENN_MN (positive) significant relation at 
2.5 km, CLUMPY (positive) at 1 km with first axis. COH 
(negative) at 0.5 km is significantly related to the second 
axis, whereas AI (positive) is significantly related at 0.5 km 
scale with the first axis. SDI (negative) and SEI (negative) 
with first and second axes, respectively, at 0.5 km and 1.5 
km with first and second axes, respectively.

Table 4. Significance Test at p < 0.05*

Test of Significance of all Canonical Axes F-Ratio R2 R2adj

PM2.5-0.5 0.0261 0.9164 0.8997

PM2.5-1 0.0171 0.9434 0.9321

PM2.5-1.5 0.0462 0.8609 0.8330

PM2.5-2 0.0105 0.9645 0.9574

PM2.5-2.5 0.0210 0.9316 0.9179

PM10-0.5 0.0025 0.9502 0.9403

PM10-1 0.0038 0.9287 0.9144

PM10-1.5 0.0049 0.9717 0.9660

PM10-2 0.0478 0.8566 0.8279

PM10-2.5 0.0072 0.9753 0.9703

Table 5. Correlation between Green Infrastructure characterise metrics and Principal Component 
Analysis (PCA) axes of scale and PM2.5/10 and Graphical representation respectively, p < 0.05*.
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Discussion

In this study, we took PM pollution as the targeted urban 
environmental issue to be solved by the planning of GI. 
The study addresses the solution at the local level from 0.5 
km to 2.5 km in alignment with the government approach 
of air quality management at the airshed level (Ganguly 
et al.,  2020). The results provide the complex connections 
between GI design and PM pollution levels, as well as ef-
fective solutions for improving air quality via urban green 
space planning.

Season and scale-wise Ef fects of Green Infrastructure 
Characteristics on PM Pollution
ANOVA results revealed significant seasonal differences 
in PM concentrations, with the highest levels in winter and 
the lowest in summer. This variation is consistent with 
previous studies, which attribute winter pollution peaks 
to lower temperatures, stagnant air, higher humidity, and 
regional agricultural residue burning. PCA demonstrated 
that a considerable proportion of PM concentration vari-
ance (82%–87%) could be explained by the first two prin-
cipal components, confirming the strong relationship 
between GI characteristics and air pollution. Scale sensi-
tivity was evident, with smaller spatial scales (0.5–1.5 km) 
favoring compositional metrics like CA and PLAND since 
the vegetation cover serves as a sink for pollution (Liu et 
al., 2017; Zhang et al., 2021a) and promotes pollutant dep-
osition (Hirabayashi et al., 2015; Hirabayashi et al., 2012; 
Tiwari & Kumar, 2020). At larger scales (2–2.5 km) config-
urational metrics such as LPI and ED favored, as the high 
ED zone of GI behaves as an air filter by creating a buff-
er or protective green boundary as the high ED zone of GI 
behaves as an air filter by creating a buffer or protective 
green boundary as the high ED zone of GI behaves as an 
air filter by creating a buffer or protective green bound-
ary. These findings align with existing literature empha-
sizing that vegetative coverage impacts local air quality 
more directly at smaller scales, while spatial configura-
tion plays a greater role at broader urban landscape lev-
elsThe shape matrices of GI characteristics do not directly 
impact PM pollution reduction (Lei et al., 2018). High COH 
values in the landscape can be a tangible obstacle that in-
tercepts and captures suspended particulate matter from 
the atmosphere (Li et al., 2021). The process of intercep-
tion helps in the removal of particulate matter (PM) from 
the atmosphere, thereby leading to a reduction in its con-
centration. A high coefficient of COH supports the forma-
tion of microenvironments that facilitate the accumula-
tion of settled dust, thereby mitigating its dispersion into 
the atmosphere (Ge et al., 2021). The spatial distribution of 
GI characteristics in a given area can impact the direction 
and f low of air movements across the terrain. The phe-

nomenon of wind encountering an obstacle can result in a 
reduction of its velocity and a change in its direction, lead-
ing to the occurrence of turbulence. The phenomenon of 
turbulence helps in the dispersion and attenuation of par-
ticulate matter and other airborne pollutants by impeding 
their accumulation in specific regions. The process facili-
tates the amalgamation of uncontaminated air with con-
taminated air, decreasing the collective level of particu-
late matter (PM). AI significantly impacts PM10 reduction 
at higher scales of 1.5 km to 2.5 km. The findings were 
consistent with prior research, which suggested that the 
ability of urban green spaces to mitigate fine particulate 
matter was positively correlated with the proximity and 
contiguity of their landscape patches (Liu & Shen, 2014). 
Moreover, the escalating intricacy of the GI terrain typi-
cally amplifies the edge effects of GI landscapes, thereby 
aiding in the interception of particulate matter. SDI and 
SEI show significant reduction potential during summer 
at 0.5 km scale and during Autumn at 1.5 km. The SDI and 
SEI have the potential to demonstrate the heterogeneity of 
landscape patches, and their efficacy is based on the dis-
tribution of diverse patches. A higher index value indicates 
a landscape that is more evenly distributed. A higher de-
gree of landscape distribution results in a stronger cor-
relation between land use and increased interaction be-
tween “sink” and “source” landscapes, leading to a more 
frequent reduction of PM pollution (Łowicki, 2019). How-
ever, six configuration GI characteristics increase PM pol-
lution during certain seasons at several scales. 

Comparison of compositional and configurational GI on 
PM pollution variation
A comparative analysis revealed that compositional char-
acteristics (e.g., CA, PLAND) are more effective in PM re-
duction at smaller spatial scales, where vegetation density 
directly contributes to pollutant deposition. On the oth-
er hand, configurational metrics (e.g., LPI, ED, COH, AI) 
played a stronger role at larger scales, inf luencing airf low 
patterns, turbulence, and pollutant dispersion. This re-
inforces the importance of a scale-sensitive GI design, as 
certain benefits—such as aerodynamic interactions and 
pollutant interception—become more pronounced with 
increasing spatial extent (Lei et al., 2018). The results also 
underscore the complex role of shape and spatial configu-
ration metrics like LSI, SH_MN, COH, and AI. While high 
COH values were associated with PM reduction by form-
ing barriers to airborne particulates, other metrics exhib-
ited season-dependent or pollutant-specific effects. For 
instance, LSI showed a stronger association with PM2.5 
reduction, while SH_MN was more relevant for PM10, 
highlighting the need for pollutant-specific GI design 
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strategies. The observed heterogeneity in GI–PM rela-
tionships across scales and seasons suggests that a one-
size-fits-all approach to green space planning is insuffi-
cient. Instead, contextual design strategies are required. 
For example, denser vegetation patches (high CA/PLAND) 
should be prioritized in residential neighborhoods to im-
prove local air quality, while connectivity and edge com-
plexity (high ED/LPI/AI) should be enhanced in larger 
parks or peri-urban buffers to leverage wind interactions 
and pollutant dispersion.The presence of a greater num-
ber of trees within a street canyon may result in decreased 
ventilation and an overall rise in air pollution levels (Chen 
et al, 2018; Zhou et al., 2019). Additionally, studies have 
also shown that the existence of high-level vegetation can-
opies, such as trees, can lead to a decline in air quality. In 
contrast, low-level green infrastructure, such as hedges, 
can enhance air-quality conditions (Wu et al., 2018b; Hi-
rabayashi et al., 2012; Srbinovska et al., 2021). The correla-
tion between spatial configurations and PM concentration 
exhibited heterogeneity across various seasons and scales. 
Additionally, the landscape metrics of green space exhib-
ited both positive and negative impacts on PM concentra-
tion. Therefore, the efficacy of green space in mitigating 
PM concentration is contingent upon the equilibrium be-
tween these advantages and disadvantages. 

Limitation
This study increased our understanding of PM pollution 
and urban green space spatial patterns, but it had some con-
straints, though the following assumptions and conditions 
were adopted to try to minimise the constraints. Based on 
the conditions and assumptions, this study picked the most 
significant number of plots possible for the study. Future re-
search may benefit from more sample plot data. The follow-
ing criteria and presumptions were used to choose moni-
toring stations for study: (i) Major modifiers like substantial 
bodies of water are absent from AOI; (ii) Data on PM con-
centrations on rainy days were excluded from the research; 
(iii) Monitoring stations were located in certain local climat-
ic zones (LCZs) so as to have the least amount of disagree-
ment owing to built-up morphology in the research. Inter-
polated PM concentration map data was used to calculate 
each plot’s PM concentration value, which was verified sta-
tistically, and the mean value was estimated at each scale. 
In future studies, more monitoring stations may be used 
to achieve a more accurate concentration value. High-res-
olution geospatial data may help map green infrastructure 
landscape patterns more accurately. The association be-
tween PM pollution and greenspace patterns must be ex-
amined with respect to wind speed and direction. Other 
weather-related characteristics are also required.

Conclusion 

The relationship between PM pollution and the greens-
pace pattern was not as straightforward as anticipated. 
In this study, we took Delhi as an example, one of the 
most polluted cities in India.This study provides a com-
prehensive multiscale and seasonal assessment of the in-
f luence of GI landscape characteristics on particulate 
matter (PM2.5 and PM10) pollution in an urban context. 
Key findings indicate that compositional metrics such as 
CA and PLAND consistently show strong negative cor-
relations with PM concentrations across all seasons and 
spatial scales, underscoring the role of vegetation cov-
er in pollutant deposition. Similarly, TE and ED metrics 
contribute significantly to PM reduction, particularly 
during the autumn and winter months at lower scales, by 
enhancing the buf fering capacity of green spaces. Con-
figurational metrics such as LPI, LSI, and COH also ex-
hibited scale- and season-specific ef fectiveness. Their in-
f luence on PM pollution was more pronounced at larger 
spatial scales, highlighting the importance of spatial ar-

rangement and connectivity of GI patches. The study also 
emphasizes the dual role of GI: while certain configura-
tions reduce PM through improved dispersion and dep-
osition, others—especially dense, high-canopy vegeta-
tion in confined spaces—may hinder air circulation and 
increase PM accumulation. This reinforces the need for 
context-specific GI design strategies that balance aero-
dynamic and deposition ef fects for optimal air quali-
ty outcomes. The research perfectly aligns with the gov-
ernment’s strategy for reducing air pollution by focusing 
on airsheds. Overall, the findings provide actionable in-
sights for urban planners and policymakers. By tailoring 
GI interventions to scale, configuration, and seasonal 
dynamics, cities can enhance the ef fectiveness of green 
infrastructure as a nature-based solution for urban air 
quality management. Future research incorporating 
more monitoring stations, high-resolution spatial data, 
and additional meteorological variables will further re-
fine the understanding of GI–PM dynamics. 
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