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ABSTRACT

Unprecedented extreme heat events (EHEs) have amplified associated health risks, but 
they present great dif ferences within the urban environment. This paper aims to assess 
heat-hazard risk (HHR) and associated vulnerability in Nagpur, a heat-prone Indian city us-
ing remotely sensed and on-site meteorological data. HHR was generated through high 
resolution local climate zone (LCZ) maps via the product of hazard and vulnerability which 
featured census-tract socio-economic variables (sensitivity and adaptive capacity) and ex-
posure. Principal component analysis (PCA) with equal weighting was applied to develop 
a composite fine-scale heat vulnerability index (HVI). Out of 136 wards, a total of 68 wards 
were identified to have ‘high’ or ‘very high’ HVI featuring about 49.06% of the population. 
LCZ-based spatial mapping showed a heterogeneous heat ‘risk-scape’ across the city. ‘High’ 
and ‘very high’ heat vulnerability/risk (HV/R) signature was observed in city core, its ad-
joining areas (LCZs 3 and 3F) and urban fringes (LCZs 9 and 93). Conversely, open areas with 
moderate vegetation cover and natural classes (LCZs 6, 6B, A and B) showed ‘moderate’ to 
‘low’ HHR. The findings of this research will enable the urban practitioners and policymak-
ers to deal with explicit determinants of heat vulnerability and risk especially in regions 
with low adaptive capacity. 
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Introduction

Heat-related hazards pose major health risks in cities (San-
tamouris, 2019; Ebi et al., 2021) and significantly affect ur-
ban livability (Wouters et al., 2017; Kotharkar et al., 2024a, 
2024b). Extreme heat events (EHEs) or heat waves (HWs), 
characterized as extended durations of abnormally elevat-
ed temperatures particularly result in excessive mortali-
ty rates (Gasparrini and Armstrong, 2011; Kumar & Singh, 
2021). In recent past, multiple cities globally have suffered 
the brunt of frequent HWs including 2015 Indian and Paki-

stani HW (Wehner et al., 2016), 2016 South-East Asian HW 
(Gu et al., 2016), 2019 European HW (Pascal et al., 2021), 2020 
Siberian HW (WMO, 2021) and 2021 North American HW 
(Keith et al., 2021). Multiple reports have predicted EHEs to 
be more intense, more frequent and longer-lasting, particu-
larly in urbanized environments (IPCC, 2018, 2021). In this 
context, it is of paramount importance for urban practition-
ers to gain knowledge on heat vulnerability and associated 
socio-economic risks to manage and cope with EHEs.

http://www.dgt.uns.ac.rs/en/homepage/pannonica/
mailto:rskotharkar@gmail.com
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In the recent past, multiple studies have conducted 
HV/R assessment across cities/metropolitan areas/regions 
with improving spatial accuracy (Maragno et al., 2020; 
Karanja et al., 2022). In this study, we define HV/R as a tool 
which can developed to identify the population or geogra-
phies that are at high risk of heat hazard (HH) using spa-
tial socio-economic, physical and environmental data that 
are associated with heat-related adverse health outcomes. 
The external event of a HH can be referred to a dangerous 
condition or risk to public health caused by extreme heat 
episodes. This can result from high environmental tem-
peratures, prolonged exposure to heat sources, or phys-
ical exertion in hot conditions. The knowledge of HV/R 
can subsequently inform urban planning policies, public 
health interventions, emergency measures and mitigation 
strategies. The wide range of studies shows concentration 
of research efforts in developed countries especially with 
tropical climates (Azhar et al., 2017; Hu et al., 2017; Rathi 
et al., 2021; Kotharkar et al., 2019; Li et al., 2022). Similarly, 
a number of research efforts have concentrated on map-
ping heat-health risks to evaluate intra-urban differenc-
es (Navarro-Estupiñan et al., 2020; Kotharkar & Ghosh, 
2021a, 2021b; Zhou et al., 2021; Chen et al., 2022; Cheval et 
al., 2022; Ellena et al., 2023; Ma et al., 2023).

Urban environments exhibit significant variations in 
heat risks (HRs) and/or HHRs due to differences in sur-
face morphologies and physical structures. In this paper, 
we define HHR as the potential harm to human health 
across population groups, due to exposure to extreme heat 
conditions in a given geographical area. To better under-
stand the impact of different urban surfaces, Stewart and 
Oke (2012) introduced the concept of local climate zones 
(LCZs). LCZs are defined as the regions that possess sim-
ilar characteristics like surface cover, material, structure, 
and population activity, extending from several hundred 
meters to a few kilometers. The framework has been ex-
tensively used to collect urban data by logically dividing 
the urban landscape (Lehnert et al., 2021). It has found its 
application in the wider assessment of heat-health risks in 
multiple cities (Verdonck et al., 2018; Chen et al., 2021), in-
cluding Chongqing (Cai et al., 2019), Hermosillo (Navar-
ro-Estupiñan et al., 2020), Beijing (Zhou et al., 2021; Chen 
et al., 2022), Turin (Ellena et al., 2023) and Changzhou (Ma 
et al., 2023). The wide range of assessments using spa-
tial classification systems (e.g., LCZ maps) provides val-
uable input and decision support for climate adaptation 
planning to mitigate urban HRs. Such assessments can 
inform, guide and strengthen heat-health action plans 
(HHAPs) via extreme heat planning and management. A 
HHAP lays a strong foundation and serve as an effective 
tool for directing heat-related adaptation and mitigation 
efforts across spatial scales (Kotharkar & Ghosh 2021b). 
HHAPs aims to provide a methodical framework inclusive 
of public health responses, activation of alert systems and 

inter-agency coordination to reduce the negative impact 
of HWs. Hence, evidence-based local assessment of HV/R 
is crucial for augmenting the overall response to growing 
risks of HWs.

A widely used framework for assessing heat-related 
health risks is the ‘Crichton Risk Triangle’, which consists 
of three key components: hazard, exposure, and vulnera-
bility (Crichton, 1999). Over the past decade, an increasing 
number of studies have adopted this framework for eval-
uating heat-related health risks (Hu et al., 2017; Estoque 
et al., 2020). With the advancement of research on LCZ, 
many studies have demonstrated that the framework is 
a valuable tool for analyzing various aspects of the urban 
thermal environment (Verdonck et al., 2018). For instance, 
Zhou et al. (2021) applied the LCZ system to examine heat 
risk in Beijing, specifically analyzing the distribution of 
LCZ types in relation to population heat exposure. Most 
previous studies assess risk at the level of administrative 
units (such as cities or neighborhoods) primarily due to 
data constraints. However, it lacks the resolution to cap-
ture the heterogeneous spatial distribution of populations 
within those boundaries. While such studies provide val-
uable insights for urban planning and management, they 
fall short in analyzing finer-scale relationships with urban 
structure, limiting their usefulness for implementing tar-
geted planning measures (Hu et al., 2017; Zuhra et al., 2019; 
Chen et al., 2022). Additionally, past research has largely 
concentrated on heat-related hazards, with comparatively 
little attention given to exposure and vulnerability, which 
represents two critical components that shape the overall 
impact of hazards (Ren et al., 2022; Wu et al., 2022).

Research gap, novelty and significance of the study
The existing literature shows that the geographical distri-
bution of HV/R assessments in Asian tropics as well as high 
population and development density settings (e.g., India) 
are not usually well known and remain less explored bar-
ring a few (Rathi et al., 2021; Shih & Mabon, 2021; Nanda et 
al., 2022; Ghosh et al., 2024). Moreover, due to limited avail-
ability of dense weather station data in these regions, sever-
al studies have used remotely-sensed land surface temper-
ature (LST) to measure HH (Romero-Lankao et al., 2012). 
While some studies have highlighted that the UHI effect 
increases the extent and intensity of extreme heat stress in 
cities, most have focused solely on daytime temperatures, 
neglecting nighttime temperatures and potentially under-
estimating the overall HHR in urban areas. Research has 
shown that integrating heat exposure data with population 
vulnerability factors can effectively map high-risk areas and 
guide targeted interventions (Inostroza et al., 2016; Hu et 
al., 2017). Additionally, spatial frameworks enable the iden-
tification of heat risk hotspots from local to regional levels, 
supporting more effective climate adaptation planning and 
emergency management (Aubrecht & Özceylan, 2013; Ma et 



Geographica Pannonica | Volume 29, Issue 2, 84–107 (June 2025)Rajashree Kotharkar, Aveek Ghosh, Ravindra Keskar

| 86 |

al., 2023). As EHEs are predicted to increase in frequency 
and severity due to climate change, these spatial vulnerabil-
ity assessments become increasingly important for devel-
oping targeted heatwave preparedness plans and reducing 
heat-related health risks (Ghosh, 2024). Hence, spatial vul-
nerability and risk estimation are crucial for understanding 
and mitigating heat-related hazards in urban areas (Karan-
ja & Kiage, 2021; Li et al., 2022, 2024).

It has also been shown that LCZs vary in the levels of 
human thermal stress they experience due to extreme heat 
(Kotharkar et al., 2021, 2022). A study in Nagpur highlight-
ed pedestrian discomfort and thermal stress in commer-
cial streets, affecting walkability and public transit usage 
(Mohite & Surawar, 2024). Another research identified rel-
atively high levels of thermal stress benchmarks with re-
spect to respondent’s sensation, comfort, tolerance and 
acceptability in Nagpur city (Kotharkar et al., 2024a). A re-
cent comprehensive study by Kotharkar et al. (2024b) indi-
cate that large low-rise, sparsely built, and scattered areas 
mixed with compact low-rise zones (i.e., LCZs 8, 9 and 93) 
present higher levels of heat stress indicating greater sus-
ceptibility to mortality. The wide variety of scientific lit-
erature constructs a possibility of different LCZs demon-
strating variation in heat-related risks and implications. 
However, vulnerability-based research to inform extreme 
heat-related risks are still limited. LCZs with distinct sur-
face morphologies and physical structures can help iden-
tify differences in HRs and provide a foundation for de-
veloping effective adaptation and mitigation strategies 
(Kotharkar et al., 2024c). This study uses the LCZ frame-
work to standardize urban zones, a widely adopted meth-
od for examining spatio-temporal variations in the ther-
mal environment. Therefore, to fill this research gap, the 
research conducts a comprehensive HV/R assessment 
combined with LCZ maps to provide valuable insights of 
high-risk areas at a local level with finer resolution.

The present study is first of its kind to employ a novel 
and hybrid approach to calculate HHR using census and 

local climate information (daytime and nighttime hazard 
analysis) in Nagpur, a heat-prone central Indian city. It at-
tempts to spatially analyse and conduct a comprehensive 
heat-related health risk assessment using LCZ classifica-
tion at a spatially explicit raster level. This is particular-
ly critical in tropical and sub-tropical regions with limited 
adaptation solutions, low socioeconomic status and poor 
heat-health governance. These investigations can play a 
crucial role in mitigating the adverse impacts of HHs on 
households via easier implementation, thereby enhancing 
the urban thermal environment in cities.

Aim and objectives of the study
The present study aims to estimate HHR for Nagpur, a 
centrally located tropical Indian city. It attempts to assess 
local-level heat-health risk (HHR) using the LCZ classifi-
cation to help inform and support decisions for the effec-
tive implementation of preventive measures in heat-health 
action plans (HHAPs). The objective of this paper is to ex-
plore the interaction of HH and related vulnerability at 
ward level. Mapping of HV involved estimating the spatial 
patterns of exposure, sensitivity and adaptive capacity us-
ing principal component analysis (PCA) tool and identify-
ing the inf luencing variables.

Study area and climate
Nagpur (21.1458° N, 79.0882° E; 310 meters above sea lev-
el) is a tropical city located in central India. The city, ad-
ministered by the municipal corporation, has a popula-
tion of approximately 2.4 million and a gross population 
density of 110 people per hectare (pph) (MHA, 2011). Span-
ning an area of 217.65 km², Nagpur is the 13th largest city 
in India by population. The city is relatively compact, with 
dense core areas. In the peripheral regions, particularly in 
the western and southwestern parts, the population den-
sity ranges from 20 to 32 pph, while in the inner and core 
areas, the density can reach as high as 750 to 1,000 pph. 
Nine wards situated in the city center has density in the 

Figure 1 а, b. Population density of Nagpur city in 2011 (b) LULC map
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range of 601–1000 pph while ward no. 67 has population 
density in excess of 1000 pph (refer Fig. 1a). In 2021, area 
covered under built-up, grassland, vegetation (sparse and 
dense), barren and water bodies were 41.2%, 12.13%, 17.31 
%, 26.07% and 3.29%, respectively (see Fig. 1b). Slums are 
spread over an area of 17 km2 (7.81%) while >2% of the land 
is officially classified as urban green spaces.

The city has a tropical savanna climate, classified as “Aw” 
under the Köppen climate system. It experiences four dis-
tinct seasons: summer (March to June), monsoon (July to 
August), post-monsoon (September to October), and win-

ter (November to February). Historically, annual tempera-
tures range from a record high of 48°C during summer to a 
low of 4°C during winter (Kotharkar et al., 2021). However, 
city’s tropical climate experiences significant temperature 
variations throughout the year. Summers are exceptional-
ly hot, often accompanied by frequent heatwave days, lo-
cally known as ‘loo’. In recent past, the city has witnessed 
record extreme temperatures coupled with recurrent HWs 
with increasing intensities. These extreme summer con-
ditions create uncomfortable outdoor environments and 
pose exacerbated thermal discomfort. 

Materials and methods

The HHR mapping workf low is carried out in four stages, 
as shown in Figure 2. The present research was aided by 
various software including ArcGIS v10.4, Autodesk Auto-
CAD v2020, HOBOware v3.7.4, MS Excel v2011, and statis-
tical software ‘R’ v4.2.1. The stages of the study can be de-
scribed as:

1. The first stage involved a literature review of previ-
ous HV/R assessments across geographic locations 
and climate zones to identify appropriate indica-
tors which are best possible fit. The indicators from 
each variable to describe vulnerability were extract-
ed from 2011 census data, which was pre-processed 

(conversion from vector to raster form) and normal-
ized for further analysis. Simultaneously, LCZ map-
ping of Nagpur city was conducted using WUDAPT 
technique (Bechtel et al., 2015; Mills et al., 2015). 
To estimate HH, in-situ air temperature measure-
ments (refer Fig. 3) were carried out across different 
LCZs covering major parts of the city.

2. In the second stage, PCA with varimax rotation was 
used as a dimension reduction technique to filter 
the actual indicators explaining majority of the var-
iance. The HVI scores (ward-wise) were normalized 
on a scale of 0 to 1.

Figure 2. Workflow for HHR mapping
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3. The third stage encompassed spatial mapping of HV 
variables (adaptive capacity, exposure and sensitivi-
ty) which led to the generation of composite HV map 
using eqn. 2. Wards with very high HVI as well as 
dominant LCZs were identified and spatial overlap 
and the intensity of HHR across LCZ classes were 
analyzed.

4. The fourth and the final stage involved the estima-
tion of HHR using the product of HH and HV (for 
wards with very high HV). 

HV assessment
The census at municipal ward level, developed by the Of-
fice of the Registrar General and Census Commissioner 
of India, Ministry of Home Af fairs, Government of India 
was used for spatial analysis. The 2011 census data within 
continuous urban area of Nagpur municipality (consist-
ing 136 wards) was obtained from https://censusindia.
gov.in/census.website/data/census-tables. A composite 
heat vulnerability index (HVI) was developed using spa-
tially explicit variables of sensitivity, adaptive capaci-
ty and exposure. Duplicate variables that represented 
similar constructs were removed and diverse indicators 
across demographic, social, economic, health, and envi-
ronmental domains were selected. The present study en-
compasses a combined total of twenty-one (21) indicators 
including eight (8) indicators of adaptive capacity, twelve 
(12) indicators for sensitivity and LST as the sole indi-
cator for exposure (refer Annexure I). It considers that 
HVI is triggered by sensitivity and exposure and dimin-
ished with increasing adaptive capacity (see eqn. 1 and 2), 
which can be represented as:

Heat Vulnerability = f  (Exposure, Sensitivity, Adaptive capacity)  (1)

This can be mathematically calculated as shown in eqn. 
2:

HV = S+E−Ac  (2)

where, HV is the composite heat vulnerability, S refers 
to sensitivity level, E refers to exposure level, and A corre-
sponds to the adaptive capacity.

Adaptive Capacity
Adaptive capacity denotes the residents’ capability to re-
spond to the adverse impacts of extreme heat and rebound 
from any resulting losses. Eight indicators constituted 
adaptive capacity which included access to infrastructure 
and other coping mechanisms (electricity, water, commu-
nication/health/social facilities, personal vehicle and bank 
account) which help residents to survive periods of ex-
treme heat (Kovats & Hajat, 2008) (see Annexure I). NDVI 
was included as an indicator ref lecting higher proportion 
of vegetation and its health which reduces heat intensity 
(Raja et al., 2021).

Sensitivity
‘Sensitivity’ is the degree to which urban population is af-
fected by heat-related stimuli (IPCC, 2014; Sharma & Ravin-
dranath, 2019). Twelve (12) indicators obtained from census 
data were deduced to determine sensitivity (see Annexure 
I). This include illiterate population and person with dis-
ability as they are not aware of the negative effects of ex-
treme heat (Cutter et al., 2003; Uejio et al., 2011; Raja et al., 

Figure 3. LCZ map of Nagpur city showing measurement locations

https://censusindia.gov.in/census.website/data/census-tables
https://censusindia.gov.in/census.website/data/census-tables
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2021) and possess fewer resources to combat the heat expo-
sure and thus are vulnerable to heat stress. Females, young 
children (below 6 years) and elderly (above 60 years) popula-
tion were accounted as they are susceptible to EHEs (Wil-
helmi & Hayden, 2010; Nayak et al., 2018). It also includ-
ed the socioeconomically marginalized section (scheduled 
caste and scheduled tribes). It further considered popula-
tion density, typology of dwelling units, average number of 
inhabitants per household and single household sizes to ac-
count for sensitive population groups. 

Exposure
‘Exposure’ to extreme heat is referred to as the external 
impact of HH on the population. In the present study, ex-
posure is represented by LST, which is considered to be 
one of the most inf luential variables to describe heat ex-
posure (Zuhra et al., 2019), which heightens extreme heat 
issues (Reid et al., 2009; Aubrecht & Özceylan, 2013). 

Heat-hazard estimation
HH is captured through the intensity and distribution of 
extreme heat. The study accounted for the nocturnal ef-
fect by integrating Tmax with daily minimum tempera-
ture (Tmin). Tmax and Tmin across selected LCZs were used 
to represent HWs and hot nights respectively to account 
for its intensity and frequency. The study applied the HW 
criteria formulated by the India Meteorological Depart-
ment (NDMA, 2019) for the plains of India. HW conditions 
are identified when the maximum temperature at a sta-
tion reaches 45°C or higher during the day. HH was calcu-
lated by summing the instances when the daily maximum 
temperature exceeded 45°C during daytime (nosTd45) and/
or 28°C during nighttime (nosTn28). These daily instances 
were then aggregated and normalized to create an HH in-
dex. (see eqn. 3):

HH =
nosTd45 +nosTn28( )∑
Total instances  

(3) 

where, HH is the heat hazard, nosTd45 refers to number 
of days with daily maximum temperature above 45°C, and 
nosTn28 is the number of days with daily minimum temper-
ature above 28°C. The total instances were estimated to be 

108 (54 days * 2 instances for each day ref lecting daytime 
and nighttime condition). The daytime conditions were 
considered during 06:00 – 17:59 hrs while nighttime con-
ditions denoted 18:00 – 05:59 hrs.

A threshold 28°C was selected as an indicator of trop-
ical night which is often used to measure extreme high 
nighttime temperature (nocturnal discomfort). Howev-
er, the selection of threshold for indicating tropical nights 
is inconsistent in the scientific literature. Nocturnal ther-
mal high is considered when Tmin  exceeding an absolute 
threshold such as 25-28°C or 90% or 95% percentile of its 
climatological series (Ha & Yun, 2012; Klok et al., 2023). The 
present study selected the threshold (28°C) based on the re-
search conducted in similar tropical Asian countries (Ko-
rea and South China) (Chen et al., 2023; Klok et al., 2023). 

Local climate zone mapping and collection of 
summertime air temperature 
The LCZ mapping of Nagpur city employed the World Ur-
ban Database and Access Portal Tools (WUDAPT) method 
(Bechtel et al., 2015) to process remotely sensed images us-
ing ArcGIS 10.4.4. Pixel-based classification techniques for 
LCZ mapping have become widely used in urban areas (Ver-
donck et al., 2017; La et al., 2020). Each pixel was assigned 
to a single LCZ, and the remotely sensed data was cropped 
to the region of interest, defined by the Nagpur municipal 
boundary. The vector processing and supervised classifi-
cation process involved selecting LCZ training areas from 
Google Earth, based on expert knowledge. LANDSAT 8 data 
was then used, along with the maximum likelihood classifi-
cation (MLC) tool, to classify the LCZs. This process was re-
peated iteratively until an accurate LCZ map was produced. 

Stationary surveys were conducted during the sum-
mer of 2022 to gather data across various LCZs (see Fig-
ure 2). These sites, representing urban areas with distinct 
microclimates, provided a 54-day dataset for analysis. The 
locations were chosen based on LCZ mapping covering ~ 
75% area of Nagpur city. Measurements of Tair were taken 
at an elevation between 1.5 - 2 meters above ground lev-
el, and recorded at five-minute intervals. Days with ab-
normal and missing values were filtered. The final data-
set was used for further assessment. The instrument setup 
featured a built-in temperature sensor housed in a radi-

Figure 4. (a) HOBO pro V2 data logger (b) Radiation shield (c) Data logger placed inside the shield (d) Instrument 
placed at site



Geographica Pannonica | Volume 29, Issue 2, 84–107 (June 2025)Rajashree Kotharkar, Aveek Ghosh, Ravindra Keskar

| 90 |

ation shield. An Onset HOBO U-23 Pro V2 weatherproof 
data logger, accurate to ±0.2°C within a temperature range 
of 0–70°C, was used for data collection (refer Fig. 4a-d). All 
necessary precautions and specifications were followed 
during the surveys (Oke, 2004; Runnalls & Oke, 2006).

Heat-hazard risk assessment
The study employed Crichton’s conceptual definition of the 
risk triangle (Crichton, 1999) and IPCC AR4 (IPCC, 2007) to 
develop the HHR map. This notion offers a concise struc-
ture overlapping the layers of hazard and vulnerability. 
Multiple studies have demonstrated that the multiplica-
tive principle accurately captures the intricate interaction 
between hazard and vulnerability (Estoque et al., 2020). 
The present study adopted the methodology used by Ma et 
al. (2023) and estimated the combined HHR as the aggre-
gate of hazard and vulnerability (refer eqn. 4), which can 
be understood as:

HHR =HH ⋅HV  (4)

where, HHR is the heat-hazard risk, HH refers to heat 
hazard, and HV denotes heat vulnerability.

The allocation of weights to indices within the risk tri-
angle framework has been a point of inconsistency in prior 
literature (Reckien, 2018). Therefore, this study opts for as-
signing equal weights to the layers of hazard and vulnera-
bility in generating the HHR.

Statistical analysis
PCA was applied to embrace multiple factors of vulnera-
bility (Wolf & McGregor, 2013; Inostroza et al., 2016; Nayak 
et al., 2018; Kotharkar et al., 2019). This approach has prov-
en reliable as a method for reducing dimensions, creating 
independent principal components (PCs) that accurately 
represent the maximum variance. A composite PC score 
(z-score) was formulated to indicate the statistical devi-
ation from the mean value (Wolf & McGregor, 2013). The 
variance-weighted approach (Schmidtlein et al., 2008) was 
applied, with the ranking of principal components (PCs) 
based on the amount of data variability they capture. This 
ranking is represented by the eigenvalues associated with 
the vector of each PC (Inostroza et al., 2016). The Pear-
son correlation matrix was used to observe relationship 
of individual variables. The variables was standardised as 
PCA is highly dependent on input vaules. This was accom-
plished by transforming the values into z-scores (utilizing 
eqn. 5):

Zi =
Xi −N
SD  

(5)

where, Zi represents the z-score for each ward, Xi de-
notes the original value, N signifies the mean of all indica-
tor values, and SD represents the standard deviation of the 
individual indicator values. 

The adequacy of the data for PCA was evaluated us-
ing the Kaiser-Meyer-Olkin (KMO) test and Bartlett’s test 
of sphericity. For sampling adequacy, the KMO estimate 
should be more than 0.50 (on a scale from 0 to 1) and p value 
<0.001 to pass Bartlett’s test (Adnan et al., 2023). The Kaiser 
eigenvalue criterion (eigenvalue > 1) was employed along 
with orthogonal varimax rotation to extract PCs as sug-
gested by Kaiser (1960). Varimax rotation was chosen due 
to its capability to extract highly independent components 
(Raja et al., 2021). Any component that accounted for ap-
proximately 10% of the variance, or where the cumulative 
percent of the retained components was at least 70%, was 
kept. The calculated scores from Eqn. (2) were integrated 
to compute the aggregated HVI score. Subsequently, Eqn. 
(6) was applied to standardize the HVI scores for each 
ward on a scale from 0 to 1 (Inostroza et al., 2016):

β =
x −xmin

xmax −xmin

⎡

⎣
⎢

⎤

⎦
⎥

 
(6)

where, β represents the normalized HVI value for each 
ward, while x denotes the original HVI value. The terms 
xmin and xmax refer to the lowest and highest HVI values, 
respectively.

The HVI was calculated by summing the scores from 
each component for each ward. These normalized HVI 
values were then grouped into five categories—’very low’, 
‘low’, ‘moderate’, ‘high’, and ‘very high’—based on the GIS 
methodology outlined by Raja et al. (2021).

Estimation of satellite-based LST and NDVI
The study utilized the Thermal Infrared Sensor (TIRS) and 
Operational Land Imager (OLI) instruments of LAND-
SAT 8 to acquire daytime Land Surface Temperature (LST) 
data. [imagery date: 22 April 2022; cloud cover: 2.97%; sun 
elevation: 66°; (path 144, row 45)], which overlaps with the 
period of data collection across LCZ sites (year 2022). The 
date was selected as it represents a typical hot summer 
day for Nagpur city. Satellite imagery for Nagpur was ob-
tained from open-source data (https://eos.com/landview-
er/?lat=21.14510&lng=79.08610&z=11). LANDSAT 8 satellite 
data offer several advantages, including enhanced radi-
ometric and spectral resolution, a better signal-to-noise 
ratio, refined bandwidth, and two thermal infrared bands 
(Dube & Mutanga 2015; Karlson et al. 2015). LST was ex-
tracted by widely adopted methodology in multiple stud-
ies (Zanter, 2016; Navarro-Estupiñan; 2020). 

https://eos.com/landviewer/?lat=21.14510&lng=79.08610&z=11
https://eos.com/landviewer/?lat=21.14510&lng=79.08610&z=11
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Results and findings

The present study evaluated city-scale HH and related vul-
nerability to estimate HHR for Nagpur city. The findings are 
presented in four sub-sections which include; a) spatial dis-
tribution of LST, NDVI and LCZ classes (b) constructing a 
composite HVI using the indicators of adaptive capacity, 
sensitivity and exposure (c) mapping of HH and HHR.

Spatial distribution of LCZ classes  
and mapping of LST and NDVI
The LCZ mapping of Nagpur city showed a heterogeneous 
and uneven structure and confirmed its compact pattern 
(refer Fig. 5a). It has 10 built types (LCZs 1-10) and zones 
with few nested LCZs (LCZs 37, 3F, 65, 6B and 93). Built and 
natural types accounted for 72.61% and 27.39% area re-
spectively (refer Fig. 5b). The central regions were primari-
ly characterized by a combination of compact low-rise set-
tings (LCZ 3) and mid-rise buildings (LCZ 2). In contrast, 
the peripheral areas were dominated by LCZs 9 and 93. 
LCZ 65 (open mid-rise nested in open low-rise zone) consti-
tutes a significant sub-class among built zones, account-
ing for approximately 9.97% of the total area. LCZs 3 and 9 
were the dominant zones covering 14.74% and 9.86% of the 
area respectively (refer Fig. 5c). 

The city center comprising LCZs 3 (38.78°C) and 37 
(38.99°C) showed lower LSTmax values mainly due to mutu-
al shading attributed to densely packed buildings (see Fig. 
5d). Outer city limits embracing LCZs 9 (max. 41.78°C) and 
93 (max. 41.02°C) generally showed higher LSTmax values 
due to high daytime exposure. LCZs 3F (max. 40.03°C) and 
F (max. 46.69°C) also showed higher values due to the pres-
ence of bare patches. Areas with lower temperatures were 
predominantly concentrated in water bodies and vegetat-
ed areas. These regions have the capacity to moderate tem-
peratures through mechanisms such as heat absorption, 
evapotranspiration, and shading. The average LST ob-
served for built-up areas was 35.05°C, while for vegetation 
it was 33.59°C, and for water bodies, it stood at 26.85°C. 

The spatial pattern of Land Surface Temperature (LST) 
aligns with the distribution of LCZs, where areas with a 
higher concentration of built-up zones tend to exhibit 
higher LST values (refer Fig. 3d). An average LST of 35.58°C 
was observed while the maximum and minimum values 
were 53.23°C and 17.94°C respectively. The peripheral areas 
especially along the northern, south-western zones were 
characterized by higher LST values. Spatial differences 
in NDVI showed lack of greenness/vegetation within the 
city limits (refer Fig. 5e). Core areas comprising high den-
sity settings showed lower NDVI values. The pixel-based 
maximum and minimum NDVI values were observed to 
be 0.435 and -0.101 respectively. There is a notable negative 
correlation observed LST and NDVI, indicated by a Pear-
son correlation coefficient of -0.354 (p<0.01), suggesting a 
statistically significant relationship between the two var-
iables.

Developing a composite HVI
In the next step, the Pearson correlation matrix was cal-
culated to assess the strength and direction of the rela-
tionship between the two variables. Indicators of adaptive 
capacity when correlated with those of sensitivity, yield-
ed moderate to strong relationships (see Table 1). For in-
stance, electricity supply was positively correlated with 
population density (+0.48), housing typology (+0.559) and 
single household size (+0.648). NDVI was negatively cor-
related with roof material (-0.229) and LST (-0.354). Indi-
cators of sensitivity were found to be strongly correlated 
with infrastructural facilities (e.g., water/electricity sup-
ply, access to communication). Communication facilities 
(access to landline/mobile) showed a strong positive rela-
tionship with building typology (+0.804), single household 
size (+0.647), average number of people/household (+0.665) 
and rented housing (+0.632). LST as the sole indicator of 
exposure was found to be positively associated with build-
ing typology (+0.407), population density (+0.496) and roof 
material (0.551).
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Figure 5. (a) LCZ mapping of Nagpur city (b) proportion of built and natural types (c) overall coverage of dif ferent 
LCZs (d) Pixel-based mapping of LST (e) spatial distribution of NDVI
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A composite HVI was derived by aggregating the com-
ponents with equal weight and then normalizing the re-
sult. The PCA yielded consistent outcomes with nearly 
constant values for the eigenvalues and loadings of PCs, as 
depicted in Table 4. The present study estimated KMO val-
ues in the range of 0.59-0.73 and p-value to be 2.2e-16 (see 
Table 2) which taken together proves the suitability of da-
taset for HV analysis. 

The results of PCA highlighted the respective contribu-
tions of various factors to the HVI (refer Table 3). Two PCs 
with eigenvalues > 1 collectively explained 71.38% of the 
variance in the dataset (PC1: 44.02% and PC2: 27.36%). Ac-
cording to the rotated component matrices, PC1 was main-
ly presented indicators of adaptive capacity which includ-

ed communication facilities (-0.270), health facilities (+0.719) 
and sensitivity indicators comprising female population 
(+0.537), young population (+0.692), population density 
(+0.753), average number of people/household (+0.679) and 
roof material (+0.610). PC2 mainly featured other indica-
tors of sensitivity illiterate population (+0.730), elderly pop-
ulation (+0.628), SC/ST population (+0.531) and LST (+0.520). 
The PC loadings indicated that infrastructural facilities act 

as coping solutions while demographic factors and housing 
conditions are major inf luencing indicators of HV. 

The HV mapping was generated using its composite val-
ues (see Annexure II). Subsequent mapping of HV varia-
bles showed distinct variation across different wards of the 
city. Administrative wards in core areas showed a greater 

Table 2. Measure of Kaiser-Meyer-Olkin (KMO) and Bartlett’s test of sphericity

Adaptive Capacity Sensitivity Exposure

KMO Bartlett’s p-value KMO Bartlett’s p-value KMO Bartlett’s p-value

0.73 2.2e-16 0.59 2.2e-16 0.62 2.2e-16

Table 3. PC loadings for indicators

Indicators PC1 PC2 PC3 PC4 PC5 PC6

AD
PA

TI
VE

 C
AP

AC
IT

Y

1. Electricity supply +0.106 -0.007 +0.112 +0.032 +0.014 +0.005

2. Water supply +0.087 +0.806^ -0.040 +0.223 -0.020 +0.119

3. Communication facilities -0.270* +0.051 +0.140 -0.051 +0.117 -0.02

4. Health facilities +0.719* +0.023 +0.198 +0.157 +0.039 -0.024

5. Social facilities: religious facilities & schools -0.091 +0.044 -0.069 +0.56 +0.063 -0.223

6. Personal vehicle -0.183 +0.102 -0.027 +0.009 +0.066 -0.006

7. Bank account -0.113 +0.039 -0.005 -0.142 -0.096 +0.081

8. Normalized Dif ference Vegetation Index -0.234 +0.017 +0.184 -0.058 +0.104 -0.026

SE
N

SI
TI

VI
TY

9. Illiterate Population +0.101 +0.730^ -0.146 +0.087 +0.04 +0.097

10. Female population +0.537* +0.014 +0.060 +0.161 -0.126 -0.015

11. Population aged under 6 years +0.692* +0.056 +0.139 +0.042 -0.003 +0.008

12. Population aged over 60 years +0.173 +0.628^ +0.409 +0.006 -0.144 -0.101

13. Population of Scheduled Caste (SC)/
Scheduled Tribe (ST) +0.060 +0.531^ -0.071 -0.018 +0.068 -0.09

14. Population density +0.753* +0.181 +0.048 +0.039 -0.032 +0.142

15. Typology of houses +0.056 -0.109 +0.486 +0.072 +0.194 +0.055

16. Single household size +0.480 +0.504 +0.094 +0.091 +0.043 -0.027

17. Average number of people per household +0.679* +0.091 +0.003 -0.006 -0.018 -0.031

18. Rented housing -0.131 +0.128 +0.152 +0.153 +0.039 +0.077

19. Roof material +0.610* +0.103 -0.018 +0.068 -0.018 -0.165

20. Population that has disability 18-64 years -0.058 +0.158 +0.031 +0.024 +0.058 -0.084

EX
PO

SU
RE

21. Land surface temperature +0.18 +0.520 +0.029 +0.082 -0.045 -0.02

Note:	Statistically	significant	ones	are	values	>	0.5;	*	Statistically	significant	values	for	PC1;	^	Statistically	significant	values	for	PC2
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mix of ‘very low’ and ‘very high’ adaptive capacity. Core ar-
eas mostly represent a mix of old neighborhoods and new-
ly developed zones. This may possibly be attributed to a 
difference in infrastructural facilities (water and electric-
ity supply), urban redevelopment initiatives and presence 
of differential vegetation cover. Such moderations can 
cause change in adaptive capacity within core areas. Ur-
ban fringes in western direction had lower levels. Adap-
tive capacity was generally ‘very high’ in the wards located 
in far northern and southern fringes. The core and adjoin-
ing areas generally showed ‘moderate and ‘high’ levels of 
exposure while majority of fringes featured in ‘very high’ 
levels. The results revealed that more than 66% of the area 
was in ‘high’ or ‘very high’ exposure range. For sensitivi-
ty, western fringes were found to be in ‘high’ range while 
core areas generally showed ‘moderate’ values. About 40% 
of the area was found to be with ‘very low’ and ‘low’ sensi-
tivity levels (refer Fig. 6). 

The HV mapping was generated using eqn. (2) using its 
composite values ‘Very high’ levels of HV were found in 
core and urban fringes. Areas with moderate vegetation 
cover correspond to ‘low’ or ‘very low’ HV while most of 
the residential areas featured in ‘moderate’ level. The map-
ping showed a greater variation in the eastern direction 
while the western fringes majorly presented a consistent 
HV signature in ‘moderate’ level. The composite HV map 
showed a distribution of ‘very low’ in 5 wards; ‘low’ in 20 
wards; ‘moderate’ in 42 wards; ‘high’ in 36 wards while 33 
wards were under ‘very high’ category. About one-fourth 
of the population was found to be in ‘very low’ or ‘low’ lev-

els and 24.54% were located in ‘moderate’ level. 33 wards 
in ‘very high’ levels of HV were used for further analysis 
to calculate HHR. These were mainly located towards the 
eastern side and distributed in the city center and fringes. 
A detailed assessment of HV mapping revealed that a to-
tal of 69 wards present with ‘high’ (0.31-0.41) and ‘very high’ 
(>0.41) HVI. A total area of 39.7 km2 (out of total 217.65 km2) 
in the city was found to have ‘high’ and ‘very high’ HVI but 
constituted 49.06% of the population (about 1.18 million). 
Majority of the ‘high’ and ‘very high’ HV areas were domi-
nated by compact low-rise neighbourhoods, sparsely-built 
settings and built areas nested with bare soil.

Mapping of HH and HHR
Mapping of HH accounted for the intensity and frequency 
of HW event during the 2022 summer season. The hazard 
map revealed the distribution of high temperature days 
(both daytime and nighttime above a certain threshold) 

based on on-site data collection across different LCZs (see 
Fig. 7a). Mapping results revealed that a high percentage 
(>50%) of land area is exposed to ‘very high’ HH. Majori-
ty of ‘very high’ HH areas were found to be concentrated in 
the central, eastern and southern parts of the city. Among 
the built classes, HH levels were found to be ‘very high’ for 
LCZs 3 (0.481), 3F (0.472), 5 (0.426), 65 (0.444), 8 (0.454) and 
93 (0.481) as they experienced high daytime and noctur-
nal heat stress. ‘High’ HH was observed for LCZ 6 (0.352) 
while LCZ 9 showed ‘moderate’ value (0.306). Open zones 
with vegetation/trees (LCZ 6B) and natural classes (LCZs 
A and B) demonstrated ‘low’ HH values. Fringe areas in 

Figure 6. Spatial extent and distribution of HVI
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the north-eastern direction generally showed ‘moderate’ 
HH values. The spatial distribution of HHR for wards with 
‘very high’ HV is shown in Fig. 7 (b). HHR in the city cen-
tre of Nagpur appears to be higher compared to the sub-
urbs. Out of the 33 wards with ‘very high’ HV, 14 wards 
were designated with ‘very high’ HHR (>0.411) and were lo-
cated in the east-central part of the city. These constitute 
highly dense areas coupled with very high population den-
sity. ‘High’ (9 wards) and ‘moderate’ (9 wards) HHR consti-
tuted 18 wards and were distributed across the core areas 
and urban fringes.

LCZ-based HHR mapping revealed that densely built 
areas generally had higher values. LCZs constituting at 
least 75% of the wards were extracted and termed as ‘dom-
inant’ ones. Due to differences in urban morphology that 
LCZs represent, their corresponding risk levels were found 
to be varied (see table 4). Spatial overlap and the intensity 

of heat risk across LCZ classes were analysed for 33 wards 
which featured with ‘very high’ composite HVI scores. The 
intersection of wards and HHR distribution mostly aligns 
(commonly prevalent) for LCZs 3, 3F and 9. In a few wards, 
there exists disagreements. ‘Very high’ HHR were char-
acteristic for LCZ 3 and 3F while ‘high’ HHR values corre-
sponded for LCZs 3, 37, 3F, 65 and 9. Natural (LCZs A and 
B) and built classes with vegetation cover (LCZ 6B) showed 
‘moderate’ and/or ‘low’ HHR. ‘Very high’ and ‘high’ HHR 
areas covered 17.43 km2, accounting for about 8% of the to-
tal area. This shows a great deal of spatial heterogeneity in 
HHR even within wards with ‘very high’ HV. The findings 
ref lect that compact low-rise and its variants (LCZs 3 and 
3F) and sparsely built zones and its variants (LCZ 9 and 93) 
agree with the distribution of HHR across these adminis-
trative wards. Conversely, LCZ classes (37, 6, 65, 6B and B) 
disagree when wards and HHR values intersect. 

Figure 7. Spatial distribution of (a) heat hazard (b) heat hazard risk
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Discussion

The present study carried out a comprehensive HV/R as-
sessment for Nagpur, a tropical and heat-prone Indian 
city. The city experiences extreme summertime conditions 
and often witness severe HW conditions, thus affecting 
a large and sprawling city (Mohite & Surawar, 2024). Re-
search efforts in Nagpur have demonstrated a strong cor-
relation between heat stress indices and all-cause mortal-
ity, with certain LCZ classes showing higher susceptibility 
to heat stress (Kotharkar et al., 2024a; Dutta et al., 2020). 

The aim was to pinpoint populations or geographic are-
as at elevated risk by leveraging spatial socio-economic 
and environmental data. PCA was utilized to assess vul-
nerability encompassing three underlying vulnerability 
components: exposure, sensitivity, and adaptive capaci-
ty. Among the indicators of adaptive capacity, infrastruc-
tural facilities (such as access to water, electricity, mobile/
landline services, healthcare/social facilities, and NDVI) 
showed a negative correlation with HVI. Such findings 

Table 4. Prevalent LCZs with very high HVI and respective HHR 

Ward No HVI score Dominant LCZs Heat Hazard Risk (level)

1 0.483 3 & 9 0.291 (moderate)

2 0.511 3 & 9 0.294 (moderate)

5 0.616 3, 37 & 9 0.401 (high)

6 0.547 37 & 93 0.577 (very high)

12 0.493 3 & 65 0.399 (high)

16 0.441 3 & 65 0.305 (moderate)

17 0.529 3, 5, & 9 0.254 (moderate)

18 0.477 3, 65, & 6B 0.108 (very low)

20 0.532 3 & 6 0.452 (very high)

21 0.45 3 & 93 0.592 (very high)

25 0.474 3 & 3F 0.532 (very high)

29 0.776 3 & 9 0.309 (moderate)

30 0.797 3, 6 & 9 0.263 (moderate)

37 0.573 3 & 3F 0.451 (very high)

38 0.541 3 & 3F 0.510 (very high)

39 0.42 3 0.492 (very high)

50 0.56 3, & 6B 0.359 (high)

51 0.444 3, 6, & 3F 0.282 (moderate)

53 0.423 3 0.542 (very high)

54 0.479 3 0.531 (very high)

56 0.724 3 0.617 (very high)

57 0.579 3, 6 & 3F 0.516 (very high)

59 0.495 3, 6 & 9 0.310 (moderate)

66 0.522 3 0.555 (very high)

67 0.447 3 0.618 (very high)

76 0.448 3 0.491 (very high)

77 0.428 3, 3F & B 0.401 (high)

79 0.444 3, 6, & 6B 0.399 (high)

80 0.416 3 & 93 0.352 (high)

89 0.437 3, 6, & 6B 0.246 (moderate)

99 0.42 3, 3F, & 65 0.356 (high)

102 0.416 3, 6 & 3F 0.359 (high)

136 0.642 3, 9 & 3F 0.380 (high)
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corroborate the results of previous studies (Rinner et al., 
2010; Adnan et al., 2023). Social isolation was found to be 
another risk factor (Luber & McGeehin 2008, Uejio et al., 
2011). PCA generated two PCs where the first one consist-
ed of infrastructural facilities, specific population groups 
(young and females) and housing characteristics while the 
other one featured LST, illiterate, elderly, and SC/ST pop-
ulation (Cutter et al., 2003; Azhar et al., 2017; Karanja et 
al., 2025). Health care services provided by medical infra-
structure (e.g., hospitals, clinics) were identified as cru-
cial indicators. Education level was found to be associated 
with socio-economic status, as high illiteracy rates indi-
cate a reduced ability to read and understand heat-health 
warnings.

Spatial distribution of HV revealed three clusters with 
‘very high’ values. These wards, characterized by high pop-
ulation density, are scattered across the central part of the 
city and are represented by older neighbourhoods and 
core residential areas. This distribution aligns with the 
outcomes reported in previous studies (Wolf & McGregor, 
2013; Raja et al., 2021). The study found LCZs 8 and 10 to 
be associated with higher LST but with relatively low risk 
similar to the findings in Changzhou, China (Ma et al., 
2023). This is due to low population density as against oth-
er residential and compact zones (LCZs 3 and 3F) (Ma et al., 
2023). It proves that LST is not a good indicator for HH as-
sessment. Additionally, differential adaptive capacity was 
observed within core areas owing to demographic shifts, 
urban redevelopment and changes in infrastructural facil-
ities. The study also confirmed a significant negative cor-
relation between LST and NDVI which provides strong 
scientific evidence for increasing urban green spaces for 
effective heat mitigation. 

The Pearson correlation matrix revealed a statistically 
significant positive relationship between overall heat vul-
nerability and lack of adaptive capacity, aligning with the 
findings of Rathi et al. (2021) and Hess et al. (2012). Previ-
ous studies describe the relationship between adaptive ca-
pacity and vulnerability in three ways: (1) they are not mu-
tually exclusive, (2) vulnerability can result from limited 
adaptive capacity along with other factors, and (3) they are 
inversely related, meaning greater adaptive capacity leads 
to lower vulnerability and vice versa (Brooks et al., 2005; 
Gaillard, 2010). In this study, vulnerability was found to be 
directly proportional to the lack of adaptive capacity. This 
suggests that municipal authorities should implement 
short-term measures to improve the adaptive capacity of 

vulnerable households, while also developing long-term 
strategies to reduce their exposure and sensitivity. 

The present study found significant variation in HHR 
levels across different LCZs. It also noted that compact 
low-rise zones and its variants (LCZs 3 and 3F) occupy-
ing a large proportion of area showed ‘high’ and ‘very high’ 
HHR. This could be attributed to closely spaced buildings 
coupled with minimal vegetation leading to less evapo-
transpiration (Li et al., 2025; Zou et al., 2025). Additionally, 
these zones have a high percentage of impervious surfac-
es with densely built areas representative of older urban 
neighbourhoods or inner-city residential zones. These 
zones ref lect a higher population density and anthropo-
genic heat release which require urgent attention. Con-
versely, midrise LCZs (LCZs 2 and 5) did not exhibit high 
risk. This could be due a combination of factors related 
to urban morphology, and socioeconomic context. These 
zones house less vulnerable populations owing to better 
infrastructure facilities (water and electricity). The find-
ings align with previous empirical evidence observed in 
hot-dry tropical/sub-tropical climates (Huang et al., 2023) 
and other cities in China (Cai et al., 2019; Li et al., 2022). 
Peripheral areas representative of LCZs 9 and 93 also fea-
tured with ‘very high’ HHR. Conversely, low-density and 
open developments (LCZ 6 and 6B) presented lesser risks to 
extreme heat (Inostroza et al., 2016). Previous studies on 
high density and heterogeneous developments also sup-
port similar findings (Zhou et al., 2021; Chen et al., 2022; 
Cheval et al., 2022). These findings align with past research 
in Nagpur city which has shown an increasing trend in 
maximum temperatures, and hot nights, with heat stress 
indices rising over time (Kotharkar et al., 2024b).

The limitations of the study need to be acknowledged. 
Firstly, the present research used 2011 census data to esti-
mate HV, as the 2021 census was postponed due to the COV-
ID-19 pandemic. This may create some discrepancy among 
data collection dates and inevitably result in some tempo-
ral ambiguity in the index estimates. Secondly, ward-wise 
mortality data was unavailable which limits the validity of 
HV estimation. Lastly, equal weightage was allotted to the 
indicators which may not represent unique characteristics 
of cities. Weightings can be adjusted based on new insights 
into heat-related health issues or specific user needs. Future 
studies can include multiple instances represented by sev-
eral LST imagery can enhance the accuracy and reliability of 
HV. Additionally, research efforts can account for biomete-
orological indices to better quantify the exposure.

Conclusion

Urban heat and extended periods of hot weather present 
a significant challenge to residents and cause heat-related 
health risks. The present study assessed HHR and estimat-

ed associated vulnerability using the variables of adap-
tive capacity, sensitivity and exposure. It used a detailed, 
granular approach, incorporating both remotely sensed 
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and on-site meteorological data to estimate the city-level 
HHR. The mapping of heat vulnerability revealed signifi-
cant spatial asymmetry in its distribution. City centres and 
adjoining areas along with urban fringes were recognized 
with ‘very high’ HHR while open developments and areas 
with moderate vegetation cover presented lesser HRs. The 
HHR map for Nagpur serves as an effective tool for devis-
ing heat mitigation strategies and identifying hotspot are-
as, aiding in the identification of vulnerable zones or pop-
ulations. This approach aids in identifying risk prevention 
strategies and prioritizing heat management tactics at the 
municipal level. Application of spatial frameworks (e.g., 
LCZ map used in this study) could provide crucial insights 
for urban planners to consider climate-based recommen-
dations to alleviate extreme heat in specific zones in a city. 
The results could inform evidence-based guidelines with-
in city-level HHAPs.

Researchers agree that urban HV/R is a complex phe-
nomenon characterized by significant spatial and tem-
poral variability. As a result, HV/R assessments must be 
dynamic, adapting to recognize evolving risks driven by 
changes in urban characteristics. Future research efforts 
could be extended to the implementation of a localized 
heat early warning system and can be conducted in cities 
which are likely to be affected by future warming. Future 
research could consider supplementary indicators, such as 
pre-existing medical or chronic conditions, access to air 
conditioning, income level, and other relevant data. In ad-
dition, enhancing the quality of LCZ as a spatial unit of 
analysis can improve the overall interpretation of results. 
The methodology adopted in the present study with slight 
adjustments can act as a guide for an accurate retrieval of 
HHR and allows for greater replicability across different 
spatial scales.
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Annexure I. Indicators of adaptive capacity, sensitivity and exposure 

Variables Indicators Definition/method to quantify Source

Ad
ap

tiv
e C

ap
ac

ity
(A

c)

1. Electricity supply (ES) Ward-wise household per hectare that have electricity supply
Census of 
India-20112. Water supply (WS) Ward-wise household per hectare having water facility

3. Communication facilities (CF) Ward-wise household per hectare that has landline and mobile phone

4. Health facilities (HF) The distance of centroid of the continuous urban area in each ward to 
the nearest government hospitals Remote Sensing & 

Nagpur Municipal 
Corporation5. Social facilities: religious facilities & 

schools (SF)
The distance of centroid of the continuous urban area in each ward to 
the nearest social facilities.

6. Personal vehicle (PV) Ward-wise household per hectare having personal vehicle Census of 
India-20117. Bank account (BA) Ward-wise household per hectare availing banking facilities

8. Normalized Dif ference Vegetation 
Index (NDVI) An index for quantifying the health and density of vegetation LANDSAT-8 

imagery

Se
ns

iti
vi

ty
 (S

)

9. Illiterate Population (IP) Inhabitants per hectare who are illiterate

Census of 
India-2011

10. Female population (FP) Ward-wise female population per hectare

11. Population aged under 6 years (YP) Inhabitants per hectare below six years age 

12. Population aged over 60 years (OP) Inhabitants per hectare with age equal to or greater than 60

13. Population of Scheduled Caste 
(SC)/Scheduled Tribe (ST) Ward-wise population of SC/ST per hectare

14. Population density (PD) Ward-wise population density per hectare

15. Typology of houses (TYP) Ward-wise number of katcha/pucca houses per hectare

16. Single household size (SH) Inhabitants per hectares who live alone

17. Average number of people per 
household (HH) Ward-wise number of person per household

18. Rented housing (RH) Ward-wise rented household per hectare

19. Roof material (RM) Ward-wise household per hectare with roof material as asbestos/
metal/GI

20. Population with disability 18-64 
years (DIS) Ward-wise population that has disability 18-64 years

Ex
po

su
re

 (E
)

21. Land Surface Temperature (LST) An index which estimates radiative skin temperature of the land 
surface

LANDSAT-8 
imagery

Annexure II. Ward-wise values for HVI

Name
Normalized values

adp_sc exp_sc sen_sc hvi_total hvi (out of 1)

WARD NO 1 0.626 0.461 0.339 1.426 0.484

WARD NO 2 0.463 0.555 0.471 1.489 0.512

WARD NO 3 0.115 0.426 0.363 0.905 0.255

WARD NO 4 0.130 0.338 0.680 1.147 0.361

WARD NO 5 0.102 0.626 1.000 1.728 0.617

WARD NO 6 0.041 0.665 0.866 1.572 0.548

WARD NO 7 0.631 0.092 0.255 0.979 0.287

WARD NO 8 0.431 0.091 0.176 0.698 0.164
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Name
Normalized values

adp_sc exp_sc sen_sc hvi_total hvi (out of 1)

WARD NO 9 0.333 0.000 0.157 0.490 0.072

WARD NO 10 0.287 0.079 0.055 0.422 0.042

WARD NO 11 0.233 0.428 0.065 0.726 0.176

WARD NO 12 0.445 0.691 0.311 1.447 0.493

WARD NO 13 0.127 0.594 0.329 1.051 0.319

WARD NO 14 0.122 0.671 0.371 1.164 0.369

WARD NO 15 0.443 0.214 0.209 0.866 0.238

WARD NO 16 0.057 0.675 0.597 1.329 0.441

WARD NO 17 0.106 0.740 0.683 1.529 0.529

WARD NO 18 0.106 0.627 0.679 1.412 0.478

WARD NO 19 0.040 1.000 0.200 1.240 0.402

WARD NO 20 0.067 0.745 0.724 1.537 0.532

WARD NO 21 0.278 0.880 0.194 1.351 0.451

WARD NO 22 0.282 0.291 0.030 0.603 0.122

WARD NO 23 0.287 0.099 0.120 0.507 0.080

WARD NO 24 0.318 0.246 0.205 0.769 0.195

WARD NO 25 0.601 0.299 0.505 1.405 0.475

WARD NO 26 0.333 0.210 0.138 0.681 0.156

WARD NO 27 0.224 0.276 0.081 0.581 0.112

WARD NO 28 0.308 0.241 0.054 0.603 0.122

WARD NO 29 0.541 0.807 0.742 2.091 0.776

WARD NO 30 0.552 0.847 0.740 2.138 0.797

WARD NO 31 0.110 0.823 0.137 1.071 0.328

WARD NO 32 0.103 0.743 0.370 1.216 0.392

WARD NO 33 0.066 0.598 0.463 1.128 0.353

WARD NO 34 0.394 0.467 0.376 1.237 0.401

WARD NO 35 0.340 0.389 0.171 0.901 0.253

WARD NO 36 0.031 0.696 0.439 1.167 0.370

WARD NO 37 0.036 0.785 0.809 1.630 0.573

WARD NO 38 0.026 0.921 0.609 1.556 0.541

WARD NO 39 0.251 0.827 0.203 1.281 0.420

WARD NO 40 0.265 0.152 0.034 0.451 0.055

WARD NO 41 0.262 0.167 0.055 0.484 0.069

WARD NO 42 0.286 0.373 0.188 0.847 0.229

WARD NO 43 0.039 0.357 0.591 0.988 0.291

WARD NO 44 0.316 0.368 0.221 0.905 0.255

WARD NO 45 0.152 0.309 0.017 0.478 0.067

WARD NO 46 0.165 0.349 0.026 0.540 0.094

WARD NO 47 0.223 0.511 0.076 0.809 0.213

WARD NO 48 0.272 0.445 0.135 0.852 0.232

WARD NO 49 0.076 0.430 0.483 0.989 0.292

WARD NO 50 0.056 0.762 0.782 1.600 0.560

WARD NO 51 0.000 0.738 0.599 1.337 0.445
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Name
Normalized values

adp_sc exp_sc sen_sc hvi_total hvi (out of 1)

WARD NO 52 0.509 0.243 0.204 0.955 0.277

WARD NO 53 0.649 0.283 0.358 1.290 0.424

WARD NO 54 0.606 0.430 0.380 1.416 0.480

WARD NO 55 0.435 0.510 0.305 1.250 0.407

WARD NO 56 0.649 0.709 0.615 1.972 0.724

WARD NO 57 0.588 0.442 0.613 1.643 0.579

WARD NO 58 0.320 0.545 0.201 1.065 0.325

WARD NO 59 0.504 0.617 0.332 1.453 0.496

WARD NO 60 0.306 0.465 0.000 0.771 0.196

WARD NO 61 0.286 0.511 0.014 0.811 0.213

WARD NO 62 0.396 0.237 0.031 0.664 0.149

WARD NO 63 0.265 0.409 0.023 0.697 0.163

WARD NO 64 0.330 0.441 0.177 0.948 0.273

WARD NO 65 0.340 0.213 0.445 0.999 0.296

WARD NO 66 0.659 0.355 0.500 1.513 0.522

WARD NO 67 0.125 0.496 0.722 1.344 0.448

WARD NO 68 0.568 0.315 0.163 1.046 0.317

WARD NO 69 0.353 0.434 0.183 0.970 0.283

WARD NO 70 0.219 0.201 0.260 0.679 0.155

WARD NO 71 0.272 0.448 0.263 0.983 0.289

WARD NO 72 0.076 0.447 0.261 0.784 0.202

WARD NO 73 0.056 0.446 0.259 0.761 0.191

WARD NO 74 0.000 0.446 0.257 0.703 0.166

WARD NO 75 0.509 0.445 0.255 1.209 0.388

WARD NO 76 0.649 0.444 0.253 1.346 0.449

WARD NO 77 0.606 0.444 0.251 1.301 0.429

WARD NO 78 0.435 0.443 0.248 1.126 0.352

WARD NO 79 0.649 0.443 0.246 1.338 0.445

WARD NO 80 0.588 0.442 0.244 1.274 0.417

WARD NO 81 0.320 0.441 0.242 1.003 0.298

WARD NO 82 0.504 0.441 0.240 1.185 0.378

WARD NO 83 0.306 0.440 0.238 0.984 0.289

WARD NO 84 0.286 0.439 0.236 0.961 0.280

WARD NO 85 0.396 0.439 0.234 1.068 0.327

WARD NO 86 0.265 0.438 0.232 0.934 0.268

WARD NO 87 0.330 0.437 0.229 0.996 0.295

WARD NO 88 0.340 0.437 0.227 1.004 0.298

WARD NO 89 0.659 0.436 0.225 1.320 0.437

WARD NO 90 0.125 0.435 0.223 0.784 0.201

WARD NO 91 0.568 0.435 0.221 1.224 0.395

WARD NO 92 0.353 0.434 0.219 1.006 0.299

WARD NO 93 0.219 0.433 0.217 0.869 0.239

WARD NO 94 0.272 0.433 0.215 0.920 0.261
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Name
Normalized values

adp_sc exp_sc sen_sc hvi_total hvi (out of 1)

WARD NO 95 0.076 0.432 0.213 0.721 0.174

WARD NO 96 0.056 0.431 0.211 0.698 0.163

WARD NO 97 0.000 0.431 0.208 0.639 0.138

WARD NO 98 0.509 0.430 0.206 1.145 0.360

WARD NO 99 0.649 0.429 0.204 1.282 0.421

WARD NO 100 0.606 0.429 0.202 1.237 0.401

WARD NO 101 0.435 0.428 0.200 1.063 0.324

WARD NO 102 0.649 0.427 0.198 1.274 0.417

WARD NO 103 0.588 0.427 0.196 1.210 0.389

WARD NO 104 0.320 0.426 0.194 0.939 0.270

WARD NO 105 0.504 0.425 0.192 1.121 0.350

WARD NO 106 0.306 0.425 0.189 0.920 0.261

WARD NO 107 0.286 0.424 0.187 0.898 0.252

WARD NO 108 0.396 0.423 0.185 1.005 0.299

WARD NO 109 0.265 0.423 0.183 0.871 0.240

WARD NO 110 0.330 0.422 0.181 0.933 0.267

WARD NO 111 0.340 0.421 0.179 0.941 0.270

WARD NO 112 0.272 0.421 0.177 0.870 0.239

WARD NO 113 0.076 0.420 0.175 0.671 0.152

WARD NO 114 0.056 0.419 0.173 0.648 0.142

WARD NO 115 0.000 0.419 0.171 0.589 0.116

WARD NO 116 0.509 0.418 0.168 1.095 0.338

WARD NO 117 0.649 0.417 0.166 1.233 0.399

WARD NO 118 0.606 0.417 0.164 1.187 0.379

WARD NO 119 0.435 0.416 0.162 1.013 0.302

WARD NO 120 0.649 0.415 0.160 1.224 0.395

WARD NO 121 0.588 0.415 0.158 1.160 0.367

WARD NO 122 0.320 0.414 0.156 0.890 0.248

WARD NO 123 0.504 0.413 0.154 1.071 0.328

WARD NO 124 0.306 0.413 0.152 0.870 0.239

WARD NO 125 0.286 0.412 0.149 0.848 0.230

WARD NO 126 0.396 0.412 0.147 0.955 0.277

WARD NO 127 0.265 0.411 0.145 0.821 0.218

WARD NO 128 0.330 0.410 0.143 0.883 0.245

WARD NO 129 0.340 0.410 0.141 0.891 0.248

WARD NO 130 0.659 0.409 0.139 1.206 0.387

WARD NO 131 0.125 0.408 0.137 0.670 0.151

WARD NO 132 0.568 0.408 0.135 1.110 0.345

WARD NO 133 0.353 0.407 0.133 0.893 0.249

WARD NO 134 0.219 0.406 0.131 0.756 0.189

WARD NO 135 0.519 0.466 0.193 1.177 0.294

WARD NO 136 0.322 0.643 0.327 1.291 0.643
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