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ABSTRACT

This study proposed a method for detecting vegetation changes and establishing geospatial 
management zones based on the 10-year phenology analysis using normalized dif ference 
vegetation index (NDVI) long-term trends from Landsat 8 multispectral imagery in Nature 
Park Kopački rit. The main components of the proposed method include phenology analy-
sis and NDVI anomaly detection supported by unsupervised k-means classification of vege-
tation management zones. The reference monthly NDVI values (2013–2019) with three test 
years (2020–2022) strongly indicated very high heterogeneity in vegetation activity. A 100 
m spatial resolution and a monthly temporal resolution were used. The results of unsuper-
vised k-means classification in five vegetation activity classes indicated that three of these 
classes have considerably high negative NDVI anomalies, covering 64.1% of the study area. 
While the proposed method ensures the detection of vegetation changes and vegetation 
activity zones, a comprehensive field observation is required to determine the potential en-
vironmental and/or anthropogenic causes. However, the proposed approach significantly 
reduces the need for extensive fieldwork, allowing biologists to focus their ef forts on areas 
with detected abnormal vegetation activity.
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Introduction

Detecting changes in vegetation within protected natural 
areas is critical for environmental monitoring, conserva-
tion, and management (Slingsby et al., 2020). Vegetation is 
a key indicator of ecosystem health, biodiversity, and envi-
ronmental change, which is of special importance in man-
aging protected natural areas (Wang et al., 2020). Chang-
es in vegetation patterns can indicate a variety of ecological 
disturbances, including wildfires, invasive species, or hu-

man-caused impacts such as land use change. Conserva-
tionists, land managers, and policymakers can use timely 
and accurate detection of these changes to develop effective 
mitigation solutions and maintain the biological integrity of 
protected areas (Elsen et al., 2023). Monitoring vegetation 
dynamics also provides significant insights into the effects 
of climate change, as changes in plant composition and 
phenology are often associated with changing climate pat-
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terns. The invasive species (ElMasry & Nakauchi, 2016), and 
human-caused events such as land-use changes (Ntukey et 
al., 2022) can cause changes in vegetation that can have a 
major impact on biodiversity and overall ecological balance. 
The emerging threats can be timely addressed by identify-
ing these changes in real-time using advanced monitoring 
technologies such as remote sensing (Khanal et al., 2020). 
This proactive strategy enables the adoption of specific con-
servation measures, such as habitat restoration, invasive 
species control, or wildfire management, to reduce the im-
pact of disturbances. In addition, the data provided by veg-
etation change detection supports evidence-based deci-
sion-making for land-use planning and policy-making that 
promotes the protection of natural areas (Bell et al., 2023). 

Remote sensing technologies, especially open data satel-
lite imagery, have greatly improved the ability to detect rap-
id changes in vegetation over multiple geographic and tem-
poral scales (Radočaj et al., 2020). Such developments allow 
for early intervention and adaptive management and con-
tribute to the overall sustainable management of protected 
natural areas, ensuring the survival of various ecosystems 
and their essential ecological services (Li et al., 2020). This 
high spatial and spectral resolution enables precise mon-
itoring of plant cover and the detection of small changes 
that may indicate disturbance (Ustin & Middleton, 2021). 
In addition, its temporal resolution enables multiple sens-
ing to the same region, allowing the detection of phenolog-
ical patterns that represent seasonal changes in vegetation 
over time. Phenology analysis is critical for determining the 
timing of key life cycle events such as f lowering and leaf 
emergence, which are sensitive markers of environmen-
tal change (Dronova & Taddeo, 2022). However, it requires 
long-term satellite imagery to establish long-term trends in 
vegetation activities, for which Landsat missions provide 
stable and historically available data since 1972 (Hemati et 
al., 2021). Using Landsat multispectral imagery for phenolo-
gy analysis improves the ability to detect and interpret rapid 
changes in vegetation, resulting in a more complete under-
standing of biological changes within protected areas. This 

knowledge is critical for making informed conservation de-
cisions, as it helps to establish adaptive management meth-
ods tailored to the unique biological needs of protected nat-
ural areas (Roux et al., 2021). 

The use of vegetation indices for ecological studies, in-
cluding phenological analysis, requires careful evaluation 
of individual study objectives and environmental factors 
(Poggi et al., 2021). While indices such as the enhanced veg-
etation index (EVI), normalized difference red edge vege-
tation index (NDRE), and soil adjusted vegetation index 
(SAVI) have distinct advantages, the normalized difference 
vegetation index (NDVI) remains the preferred option for a 
phenology analysis due to its standardized [-1,1] value range 
and well-documented relationship of its values to vegeta-
tion health and vigor (Misra et al., 2020; Torgbor et al., 2022). 
NDVI has proven successful in capturing the many pheno-
logical phases of vegetation, such as green-up in spring and 
senescence in fall (Zeng et al., 2020). Its sensitivity to chlo-
rophyll concentration makes it a reliable indicator of plant 
photosynthetic activity, and thus an effective proxy for 
phenological shifts. Moreover, a recent study showed that 
these indices mutually produce a significant level of multi-
collinearity, indicating that there are only minor differenc-
es in their use for assessing vegetation health (Radočaj et 
al., 2023). The simplicity and ease of understanding of the 
NDVI makes it generally relevant across different ecosys-
tems, facilitating comparisons across studies. While pre-
vious studies thoroughly evaluated various vegetation in-
dices as a part of phenology analysis (Granero-Belinchon et 
al., 2020; Hu et al., 2021; Zhou et al., 2020), there has been a 
research gap in developing the methodology to detect vege-
tation changes and establish geospatial management zones 
for effective vegetation monitoring and management. 

To address this research gap, the objective of this study 
is to propose a straightforward and robust method of de-
tecting vegetation changes utilizing Landsat 8 multispec-
tral imagery for phenology analysis during 10 years (2013–
2022) for protected Nature Park Kopački rit in eastern 
Croatia.

Data and methods

The proposed method of detecting vegetation changes 
utilizing Landsat 8 multispectral imagery for phenology 
analysisconsists of three major steps: 1) acquiring and pre-
processing of Landsat 8 multispectral imagery; 2) phenol-
ogy analysis and NDVI anomalies detection; and 3) unsu-
pervised classification of vegetation management zones 
(Figure 1).

Study area
Nature Park Kopački rit covers 177 km2 of ecologically di-
verse wetland region situated in eastern Croatia along the 

Danube River (Figure 2). Dominant vegetation includes 
forests of white willow in the f loodplain, while slightly el-
evated areas support forests of black poplar and pedun-
culate oak (Šag et al., 2016). Aquatic vegetation thrives in 
the park’s numerous water bodies, with communities of 
duckweed, water lilies, and bulrushes prevalent. The park 
is crucial for preserving the ecological balance of the area, 
maintaining migrating bird populations, and providing 
nesting habitats for various species (Bjedov et al., 2023). 
Identifying changes in vegetation is crucial for monitoring 
ecosystem health and detecting potential dangers such as 
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invasive species, habitat loss, or water quality deteriora-
tion. Early identification of these changes enables timely 
implementation of adaptive management strategies and 
interventions to minimize negative effects and preserve 
the ecological integrity of Nature Park Kopački rit.

Landsat 8 multispectral imagery and preprocessing 
The Landsat 8 Surface Ref lectance (SR) imagery under-
went preprocessing using a cloud masking approach af-
ter obtaining the Landsat 8 satellite imagery from Goog-
le Earth Engine (Gorelick et al., 2017). The time frame for 

filtering available imagery was set from 1 January 2013 to 
31 December 2022, leaving only satellite scences with less 
than 75% overall cloud cover. The cloud masking function 
utilized various masking approaches to filter out unreli-
able pixels affected by cloud cover or sensor saturation, 
such as Quality Assessment (QA) and Radiometric Satu-
ration (RADSAT) values (Pereira et al., 2020). The spatial 
resolution of calibrated Landsat 8 bands was resampled 
to the 100 m spatial resolution in the Croatian Terrestri-
al Reference System (HTRS96/TM) prior to the phenology 
analysis. The NDVI was calculated using red (band 4) and 

Landsat 8 surface
re�lectance

Normalized di�ference
vegetation index (NDVI)

2013–2022
NDVI time series

NDVI anomalies Delineated vegetation
management zones

Filtering for cloud cover
Cloud masking
Resampling to 100 m spatial resolution

Calculation of projected
annual phenological cycle

Reference
period

K–means clustering

2013–2019 data 2020–2022 data

Figure 1. Flowchart of the study

Figure 2. Study area of the Nature Park Kopački rit
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near-infrared (band 5) Landsat 8 bands, using a normal-
ized difference formula (Zeng et al., 2020). It was select-
ed as a vegetation index for phenology analysis, as its for-
mulation increases the sensitivity of the index to changes 
in chlorophyll content, canopy structure, and overall veg-
etation vigor using the scale range from -1 to 1 (Eisfelder 
et al., 2023; Garroutte et al., 2016). In addition, NDVI’s 
widespread use in ecological studies and its compatibility 
with historical satellite data make it an excellent choice for 
long-term phenology monitoring, allowing researchers to 
evaluate vegetation trends and changes over extended pe-
riods of time (Granero-Belinchon et al., 2020). 

Table 1. provides a comprehensive overview of the num-
ber of Landsat 8 images utilized in the study per month 
and year from 2013 to 2022. The data reveal variations in 
the number of Landsat 8 images acquired over the study 
period, ref lecting factors such as satellite availability, 
cloud cover, and operational considerations. Overall, the 
number of Landsat 8 images used in the study ranges from 
25 to 33 per year, with slight f luctuations observed across 
different years. Months with higher counts of Landsat 8 
images, such as July and August, indicate periods of more 
frequent satellite acquisitions, inf luenced by favorable 
weather conditions and lower cloud cover. Conversely, 

Table 1. The number of valid preprocessed Landsat 8 images per month during the study period of 
2013–2022

Month Study year

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

January 0 3 0 1 4 2 2 2 2 4

February 0 1 1 2 2 1 2 3 2 1

March 0 2 4 3 3 1 4 3 2 2

April 1 2 3 2 2 2 2 3 3 3

May 3 2 2 2 3 4 1 3 4 3

June 3 2 4 3 3 3 4 2 4 4

July 5 4 3 4 4 3 3 3 4 3

August 4 4 3 4 4 4 4 4 3 2

September 4 1 3 2 1 2 3 4 2 1

October 3 2 1 0 3 1 3 1 2 3

November 1 2 2 1 1 1 2 2 3 1

December 4 1 3 3 3 1 3 1 2 0

Overall 28 26 29 27 33 25 33 31 33 27

Figure 3. The representation of Landsat 8 images before and af ter harmonization using “npphen” package, having the issues of: a) 
dominant cloud cover, and b) missing images with less than 75% overall cloud cover across large intervals. Harmonized vegetation 
indices displayed on the bottom represent resulting rasters from phenology analysis
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months with lower counts, such as January and October, 
suggest periods of reduced satellite availability or higher 
cloud cover, limiting the number of usable images.

However, since the availability of cloud-free Landsat 8 
images varies across the long-term periods, the phenolo-
gy analysis for the creation of harmonized monthly NDVI 
rasters was required (Figure 3). The harmonization process 
within the “npphen” package involved aligning NDVI val-
ues across different images to account for seasonal chang-
es and resampling them to the uniform grid system due to 
presence of multiple Landsat 8 tile grids.

Phenology analysis and ndvi anomalies detection
The “npphen” R package was used for phenology analysis 
and detecting anomalies that indicate vegetation changes 
(Chávez et al., 2023). Designed to maximize the potential 
of satellite-derived vegetation indices, “npphen” facilitat-
ed the extraction of phenological metrics such as season 
start, season end, and season peak, which are crucial 
for understanding vegetation dynamics. It also included 
anomaly detection techniques that allowed finding devia-
tions from predicted phenological patterns from the refer-
ence seven-year period that indicate rapid changes in plant 
activity. However, since it was released very recently, there 
is very restricted documented research on “npphen” appli-
cation in research studies. The “npphen” time series anal-
ysis capabilities allowed a systematic evaluation of tempo-
ral patterns in vegetation indicators, revealing changes in 
phenological cycles caused by disturbances such as wild-
fires, disease outbreaks, or anthropogenic impacts (Estay 
et al., 2023). The ability to detect anomalies using “npphen” 
enhanced the ability to quickly detect and respond to eco-
logical disturbances, which helps in the development of 
targeted conservation and management plans for protect-
ed natural areas. As a comprehensive and user-friendly 
tool, “npphen” made a significant contribution to phenol-

ogy research and monitoring by providing essential in-
sights into ecosystem health and resilience (Chávez et al., 
2023). Using Landsat 8 long-term imagery, the approach 
was based on calculating the projected annual phenolog-
ical cycle using raster stacks of vegetation indices or time 
series. The method efficiently captured the distribution 
of NDVI values over time by utilizing a bivariate kernel 
density estimator (Wand & Jones, 1994). From the 10-year 
study period, seven years during 2013–2019 were selected 
as the reference period for the phenology analysis, provid-
ing a basis for the anomaly detection for each year in the 
remaining three-year test period during 2020–2022.

Unsupervised classification  
of vegetation management zones
The final delineation of vegetation management zones 
within the Kopački rit Nature Park was based on the sum 
of NDVI anomalies between 2020 and 2022, using the R 
package “terra” (Hijmans et al., 2024). K-means cluster-
ing, a data-driven approach that divided the study area 
into discrete groups based on similarities in NDVI anom-
aly patterns, was utilized without the requirement for 
pre-defined training samples. K-means clustering is an ef-
fective geospatial approach to identify spatially coherent 
zones that display similar vegetation dynamics and anom-
alies based on NDVI anomaly data collected over the long 
term (Ahmed et al., 2020). This method also distinguished 
locations that consistently face vegetative stress or are re-
silient to environmental changes from other sites with 
unique phenological features (Silveira et al., 2022). The ac-
curacy and dependability of vegetation management zone 
delineation were improved by adding NDVI anomalies 
over a multi-year period, which provided a strong founda-
tion for capturing long-term trends and variability in veg-
etation dynamics.

Results

The boxplots in Figure 4 after outlier removal using the 
interquartile range approach present that the reference 
study period produced comparatively lower median NDVI 
values for the majority of months in comparison to each 
of the test years. Most notably, NDVI value ranges during 
January–April 2020 were notably lower than both the ref-
erence period and the other two years in the test period. 
However, it also produced the highest median NDVI val-
ues during August–December, which reinforces the ne-
cessity of observing multiple years in the phenology anal-
ysis, as diverse environmental and anthropogenic effects 
might affect the long-term trends in vegetation activity.

Figure 5 displays representative NDVI anomalies for 
each of the test years, indicating diverse vegetation change 

cases. While their occurrence in the western part of the 
study area is justified by the presence of arable cropland 
and the effect of crop rotation systems, there is a necessity 
for extensive field monitoring to detect the causes of veg-
etation anomalies without an apparent cause. Moreover, 
since high anomalies for arable cropland are expected due 
to crop rotation systems, the cause for vegetation anoma-
lies at those areas is known. All three representative NDVI 
anomalies also produced distinctively lower NDVI values 
for most of their respective test years, following a more 
normalized trend according to the long-term NDVI trend 
based on the reference period. 

Table 2. presents an interpretation of NDVI anoma-
lies across five classes produced by k-means unsupervised 
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classification and their respective areas within the study 
area over the years 2020, 2021, and 2022, along with their 
average values. The NDVI anomalies provided in the ta-
ble represent class centers from k-means classification re-
sults from test years. NDVI anomalies were categorized 
into five classes based on their magnitude: extremely 

negative, moderately negative, slightly negative, neutral, 
and positive NDVI anomalies. The negative NDVI anom-
alies, including extremely, moderately, and slightly nega-
tive categories, exhibit decreases in vegetation greenness 
compared to the reference period, with extremely negative 
anomalies indicating the most severe declines. Converse-

Figure 4. The boxplots of monthly NDVI values for the reference period (2013–2019) and three test years (2020–2022)  
with removed outliers
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ly, positive NDVI anomalies denote increases in vegeta-
tion greenness and primarily contain arable cropland and 
water bodies. The table illustrates notable variations in the 
magnitude and distribution of NDVI anomalies across the 
study period. For instance, the area affected by extreme-
ly negative NDVI anomalies experienced a substantial in-
crease from 2020 to 2022, reaching its peak in 2022. Con-
versely, moderately negative NDVI anomalies displayed 
f luctuations over the years, with a significant decrease 
observed in 2022 compared to the previous two years. 
Slightly negative NDVI anomalies exhibited a decreas-

ing trend over the study period, with the area affected de-
clining sharply from 2020 to 2021 and almost disappear-
ing in 2022. Neutral NDVI anomalies showed f luctuations 
over the years, with a notable increase in 2021 compared 
to 2020 and a subsequent decrease in 2022. Positive NDVI 
anomalies demonstrated an overall increasing trend, par-
ticularly notable in 2021, indicating improvements in veg-
etation greenness compared to the baseline. The resulting 
five vegetation activity classes based on the sum of month-
ly NDVI anomalies during test period are displayed in Fig-
ure 6.

Figure 5. The example NDVI anomalies for each of test years based on their monthly sum,  
indicating vegetation changes

Table 2. The results k-means unsupervised classification of NDVI anomalies during test years and corresponding 
statistics in five vegetation activity classes

Classes
NDVI anomalies

Area (%)
Annual sum (2020) Annual sum (2021) Annual sum (2022) Average

Extremely 
negative NDVI –13598 –8770 –34921 –19097 4.9%

Moderately 
negative NDVI –17768 –7965 –10917 –12217 15.2%

Slightly negative 
NDVI –14916 –4606 –77 –6533 44.0%

Neutral NDVI –8599 1355 –687 –2643 28.3%

Positive NDVI 3273 15527 15908 11569 7.5%
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Discussion

The results from this study proved that the combination of 
Landsat 8 data with the NDVI allows for phenology anal-
ysis to identify anomalies and track vegetative dynamics 
in protected areas. The vegetation anomalies were deter-
mined individually for years 2020, 2021 and 2022 based on 
the reference period between 2013 and 2019. The long-term 
phenology studies provide insights into ecosystem health, 
resilience, and responses to environmental stresses, par-
ticularly in protected regions where conservation efforts 
are paramount (Cumming et al., 2015). Understanding 
these dynamics can guide management strategies aimed 
at preserving biodiversity and mitigating the impacts of 
climate change. Since NDVI obtained from satellite im-
aging is sensitive to both chlorophyll content and canopy 
structure, it was a reliable indicator of plant health and vi-
tality (Garroutte et al., 2016). The notable application of the 
proposed approach is that it significantly reduces the need 
for extensive fieldwork in phenological studies, allowing 
biologists to focus their efforts on areas with detected ab-
normal vegetation activity. This allows monitoring large 
areas consistently and efficiently, capturing spatiotempo-

ral patterns of vegetation without the logistical challeng-
es associated with ground surveys (Zeng et al., 2020). This 
allows biologists to prioritize field investigations in spe-
cific locations that show significant anomalies, thus opti-
mizing resource allocation and enhancing the effective-
ness of conservation efforts. This targeted approach not 
only streamlines research processes but also improves 
data quality by focusing on areas where ground truthing 
is most needed to validate satellite observations and refine 
ecological models (Azizan et al., 2021). However, in diverse 
landscapes or smaller-scale land use areas, the spatial res-
olution of Landsat 8 imagery may not be sufficient to de-
tect minor changes in plant dynamics. To enhance the de-
tection capabilities of vegetation phenology anomalies, 
additional multispectral datasets with higher spatial res-
olutions, such as Sentinel-2 with spatial resolutions up to 
10 m (Phiri et al., 2020), or commercial high-resolution im-
agery like PlanetScope with resolutions as fine as 3 meters, 
can be integrated (Panđa et al., 2024). Moreover, the cre-
ation of continuous time series records over several dec-
ades aids in identifying long-term environmental chang-

Figure 6. The five vegetation activity classes produced by k-means 
unsupervised classification based on the sum of monthly NDVI 
anomalies during test period



Geographica Pannonica | Volume 28, Issue 4, 238–249 (December 2024)Dorijan Radočaj, Ivan Plaščak, Mladen Jurišić, Ivana Majić,  
Siniša Ozimec, Ankica Sarajlić, Vlatko Rožac

| 246 |

es in these protected areas. The integration of Landsat 7 
and Landsat 5 data ensures consistency and reliability in 
the long-term monitoring of vegetative changes, allow-
ing for improved continuity in phenology analysis. By en-
abling more comprehensive evaluations of vegetation dy-
namics at smaller spatial scales, these higher-resolution 
datasets allow for the identification of changes in small-
er land cover features or fragmented landscapes. Further-
more, the inclusion of supplementary data, such as mete-
orological characteristics obtained from weather stations 
or reanalysis datasets, strengthens the analysis by pro-
viding insights into the environmental forces that impact 
vegetation dynamics (Pardela et al., 2020). The phenology 
of vegetation is inf luenced by variables such as tempera-
ture, precipitation, and soil moisture, which can be used 
to explain abnormalities identified through multisensory 
analysis (Radočaj et al., 2024). To ensure effective anom-
aly identification in multisensory phenology analysis, the 
temporal resolution of accessible multispectral images is 
just as important as their spatial resolution (Sedona et al., 
2021). Sentinel-2’s frequent revisit time allows for more 
frequent observations than Landsat 8, which is particular-
ly useful for monitoring vegetation dynamics at finer tem-
poral scales. To comprehend the intricate relationships 
between climatic variability and ecosystem responses, it 
is promising to establish a link between monthly anom-
alies in vegetation dynamics and climate data rasters for 
the years 2020-2022. However, this attempt faces difficul-
ties when climate data rasters are regularly provided with 
a time buffer (Fick & Hijmans, 2017; Karger et al., 2017), re-
sulting in temporal misalignment between the two data-
sets. To align climatic data with vegetation observations, 
several techniques can be used, such as statistical mode-
ling to account for temporal misalignment, time lag anal-
yses to identify delays between climatic events and vege-
tation responses, temporal aggregation or interpolation 
of climate data to match the temporal resolution of veg-
etation anomalies, and long-term trend analyses to find 
consistent patterns over several years (Zhao et al., 2020). 
Resolving the temporal discrepancy between vegetation 
anomalies and climate data has the potential to clarify the 
complex connections between ecosystem dynamics and 
climate variability (Jiao et al., 2021). This can ultimately 
improve comprehension of how ecosystems adapt to envi-
ronmental change, despite the difficulties involved.

For phenology analysis in protected areas, using mul-
tispectral satellite images that cover periods longer than 
ten years can likely be beneficial, providing more com-
plete insights into long-term vegetation dynamics and 
ecosystem changes (Li et al., 2017). This allows for more 
detailed identification of trends, patterns, and anoma-
lies in vegetation phenology by tracking phenological 
variations over extended periods of time and establish-
ing thorough baseline information by utilizing histori-
cal satellite data. Long-term phenology studies can en-
hance the understanding of ecosystem health, resilience, 
and responses to environmental stresses as well, par-
ticularly in protected regions where conservation ef forts 
are crucial (Cumming et al., 2015). Continuous time se-
ries records can be created for several decades, aiding in 
the identification of long-term patterns and changes in 
the environment in protected regions. The integration of 
Landsat 7 and Landsat 5 data ensures consistency and 
dependability in the long-term monitoring of vegetative 
changes, allowing for an improved continuity in phenol-
ogy analysis.

The classified maps produced from the NDVI analysis 
can be utilized by Nature Park management for monitor-
ing vegetation health, ecologists for research purposes and 
policymakers for informed decision-making. The maps in-
dicate that significant positive and negative NDVI anoma-
lies may be inf luenced by natural events such as droughts 
and f looding, as well as human activities like deforesta-
tion and urbanization, which should be further explored 
in the field. However, this research relies on statistical out-
puts without adequately exploring the ecological implica-
tions of these anomalies. The study acknowledges sever-
al limitations that could affect the results. First, months 
with little or no data can introduce biases in NDVI calcu-
lations, leading to inaccurate assessments of vegetation 
health. Second, challenges in collecting ground truthing 
data due to accessibility issues may impact the validation 
of remote sensing accuracy. Third, the lack of integration 
of climate data is a significant gap, as NDVI changes can 
result from natural variability rather than abrupt distur-
bances; incorporating data from nearby meteorological 
stations could clarify how climatic factors inf luence veg-
etation dynamics. These limitations should be addressed 
in future studies, which should include ground truth data 
collected in the field.

Conclusion

This study proposed the method of detecting vegetation 
changes based on phenology analysis using Landsat 8 mul-
tispectral images, utilizing phenology analysis for NDVI 
anomalies detection and unsupervised k-means classifi-
cation for the determination of vegetation management 

zones. Overall, the multispectral imagery acquired dur-
ing the 10-year study period in Nature Park Kopački rit in 
eastern Croatia, divided into seven-year reference (2013–
2019) and three-year test periods (2020–2022) produced 
the following observations and conclusions:
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•	 the zones based on NDVI anomalied can be utilized by 
Nature Park management to monitor vegetation health 
and changes over time, enabling better conservation 
strategies;

•	 the areas which produced highest and lowest NDVI 
anomalies are recommended to be analyzed compre-
hensively during fieldwork to determine the cause of 
abnormal vegetation activity;

•	 the phenology analysis based on the long-term Landsat 
8 multispectral imagery using “npphen” R package suc-
cessfully harmonized temporally uneven images into 
systematized monthly NDVI rasters without spatial gaps;

•	 high heterogeneity was observed for both monthly 
NDVI values and NDVI anomalies after the phenology 
analysis;

•	 the results of unsupervised k-means classification en-
sured the determination of five vegetation activity 
classes, with three of these classes having considerably 
high negative NDVI anomalies as class centers;

•	 a comprehensive field observation is required to deter-
mine the potential environmental and/or anthropogen-
ic causes of vegetation changes on areas with extreme-
ly negative and moderately negative NDVI anomalies;

•	 longer study periods using the proposed methodology 
and combining earlier Landsat images with Landsat 8 
would likely produce additional and more complete in-
formation on the vegetation activity and anomalies in-
dicating vegetation changes to produce more informed 
land management plants of protected areas.
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