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ABSTRACT

Understanding the historical and projected changes in land use and land cover (LULC) in 
Djelfa city is crucial for sustainable land management, considering both natural and human 
influences. This study employs Landsat images from the Google Earth Engine and the sup-
port vector machine (SVM) technique for LULC classification in 1990, 2005, and 2020, achiev-
ing over 90% accuracy and kappa coef ficients above 88%. The Land Change Modeler (LCM) 
was used for detecting changes and predicting future LULC patterns, with Markov Chain 
(MC) and Multi Layer Perceptron (MLP) techniques applied for 2035 projections, showing 
an average accuracy of 83.96%. Key findings indicate a substantial urban expansion in Djel-
fa city, from 924.09 hectares in 1990 to 2742.30 hectares in 2020, with a projected increase 
leading to 1.6% of nonurban areas transitioning to urban by 2035. There has been signifi-
cant growth in steppe areas, while forested, agricultural, and barren lands have seen annual 
declines. Projections suggest continued degradation of bare land and a slight reduction in 
steppe areas by 2035. These insights underscore the need for reinforced policies and meas-
ures to enhance land management practices within the region to cater to its evolving land-
scape and promote sustainable development. 
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Introduction 

Land Use/Land Cover Change (LULCC) resulting from hu-
man activities is a well-recognized global phenomenon 
that has significantly transformed the Earth’s terrestrial 
surface. Over the period from 1960 to 2019, approximate-
ly one-third of the Earth’s land area underwent alterations 
(Winkler et al., 2021). While human-induced changes to 
land have been practised for thousands of years, the scale 
and pace of LULCC in recent times have escalated signif-
icantly, exerting profound effects at local, regional, and 

global scales. These changes are crucial for understand-
ing the altered landscape, ecological stewardship, and fu-
ture-oriented environmental planning (Dwivedi et al., 
2005; Fan et al., 2007a; Zhao et al., 2004). In the last three 
centuries, global LULCC has been characterized by the 
expansion of agriculture at the expense of forested areas 
(Kolb et al., 2013; Pérez-Vega et al., 2012). This trend is par-
ticularly evident in Africa, where natural vegetation has 
given way to anthropogenic land uses (Barnieh et al., 2020; 
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Bullock et al., 2021; Findell et al., 2017). Between 2012 and 
2017, Africa experienced a substantial reduction in natu-
ral vegetation and an increase in impervious areas, pri-
marily due to population growth and soil desiccation driv-
en by climate change (Nowak & Greenfield, 2020). Various 
factors, including population growth, economic expan-
sion, and physical variables like topography, climate, and 
soil composition, significantly inf luence land use and land 
cover changes (Skole & Tucker, 1993).

Choosing appropriate prediction and validation time 
intervals significantly inf luences the accuracy of predic-
tions (Chen & Pontius, 2010). The accuracy of predictions 
can be inf luenced by the pace and nature of transitions 
within the selected time intervals. Utilizing a broader 
temporal scale for modeling land cover change might lead 
to an inadequate understanding of landscape change pat-
terns, potentially compromising the overall performance 
of the model (Alvarez Martinez et al., 2011). Many research 
studies focusing on future land cover change tend to adopt 
relatively short to intermediate historical time scales, typi-
cally spanning 5 to 15 years.

Land use change is intricately linked to historical pro-
cesses, ref lecting how communities interact with and uti-
lize their landscapes. In contemporary times, land use has 
evolved beyond habitation to encompass industrial ven-
tures and tourism (Mather, 1986). Analyzing LULC chang-
es is crucial for understanding global transformations 
across spatial and temporal dimensions (Lambin, 1997) 
and provides insights into human activities within specif-
ic environments (López et al., 2001). 

However, the rapid global population growth has placed 
substantial pressure on land resources, leading to com-
plex interactions among environmental factors (Green et 
al., 1994). Land use change is a dynamic process with non-
linear patterns that can initiate intricate feedback loops, 
affecting living conditions and community vulnerabili-
ty. Therefore, evaluating land use change trajectories and 
projecting future scenarios is essential for establishing 
sustainable conditions.

Remote sensing technology of fers a rapid and ef fec-
tive means of monitoring LULC changes due to its broad 
spatial coverage, frequent updates, and abundant data 
availability (Homer et al., 2020; Zhao et al., 2016). How-
ever, processing remote sensing data traditionally can 
be time-consuming and resource-intensive, especially 
for large-scale LULC information extraction. The emer-
gence of cloud storage and computing technology, such 
as Google Earth Engine (GEE), has revolutionized the 
handling of extensive remote sensing data, making it a 
pivotal tool for monitoring land use changes (Gorelick et 
al., 2017). Satellite imagery, in particular, facilitates com-
prehensive monitoring of deforestation and landscape 
dynamics on a global scale (Noma et al., 2013; Oliveira, 
2017).

The adoption of cloud-based platforms like GEE is es-
sential for handling large-scale data efficiently, enabling 
the analysis of expansive spatial regions without the need 
for extensive data downloads (Fadli et al., 2019). 

Many scholars have conducted research using GEE to 
monitor LULC changes, water resources, eco-environ-
mental quality, and agricultural resources (Dong et al., 
2016; Ermida et al., 2020; Hu et al., 2018; Li et al., 2021; 
MAO & LI, 2021; Wang et al., 2020; Xiong et al., 2017; Xiong 
et al., 2021).

Land Change Models, such as the Markov Chain Mod-
el (MC), Artificial Neural Networks (ANN), and the Land 
Change Modeler (LCM), play a significant role in environ-
mental and geomatics research related to LULCC (Cama-
cho Olmedo et al., 2015). Monitoring and analyzing LULC 
changes are essential for understanding current land use 
patterns and their alterations, facilitating sustainable de-
velopment initiatives (Fan et al., 2007b). These models en-
hance our understanding of land use modifications driven 
by human activities (Brown et al., 2004).

Several methods, including the Markov chain (MC), ar-
tificial neural network (ANN), cellular automata (CA), CA-
Markov, binary logistic regression (BLR), and similari-
ty-weighted instance-based machine learning algorithms 
(MLA), are commonly employed to predict and simulate 
future LULC changes (Anand et al., 2018; Azari et al., 2016; 
Islam et al., 2018; Liu et al., 2017; Mozumder et al., 2016; 
Sinha et al., 2015). LCM stands out for its significance in 
capturing land cover changes and its applicability in vari-
ous contexts (Halmy et al., 2015). However, no single mod-
el is superior to others, and the choice depends on specific 
research objectives (Alqadhi et al., 2021). 

The integration of Multi Layer Perceptron (MLP) algo-
rithms into LCM frameworks allows researchers to har-
ness the power of MLP’s ability to learn from historical 
data and generate projections for future land cover sce-
narios. MLP neural networks, with their input, hidden, 
and output layers, excel at capturing complex, nonline-
ar relationships (Siroosi et al., 2020). They are particularly 
useful when prior knowledge is limited, accommodating 
missing data and operating without stringent require-
ments, unlike some other models (Pontius et al., 2008). 

Incorporating both natural and human factors into LULC 
dynamics is essential for projecting potential future scenar-
ios. These driving forces can manifest as direct or indirect 
inf luences, making their consideration crucial for optimiz-
ing land use and sustainable planning (Behera et al., 2012).

The MLPNN algorithm was employed to map the signif-
icant potential transitions between different LULC classes 
(Larbi et al., 2019). As per Eastman (2020), MLP neural net-
works have been identified as the most robust approach 
for mapping transition potentials. While the logistic re-
gression method remains a viable option, MLP neural net-
works offer the advantage of simultaneously modeling 
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multiple or even all transitions, making them highly adept 
at capturing nonlinear relationships (Eastman, 2020). 

This study focuses on Djelfa city, Algeria, which has ex-
perienced significant growth and land use changes since 
its establishment in 1962. However, a comprehensive eval-
uation of these changes using remote sensing and GIS 
technology is lacking. Such an assessment is crucial for 
effective urban planning to address the challenges posed 
by rapid urbanization. The study aims to analyze land use 
transformations in Djelfa city, document temporal shifts, 
identify driving factors, and examine initiatives for man-
aging these changes. Ultimately, the research seeks to pro-
vide valuable insights for sustainable urban planning and 
land management in Djelfa city.

Historical satellite images are used to monitor and ana-
lyze LULC changes, with a focus on predicting future 

changes under a business-as-usual scenario. Understand-
ing past, current, and projected LULC changes is vital for 
effective land management in Djelfa city, considering on-
going socioeconomic transformations. The study utiliz-
es GEE for SVM supervised classification, a high-per-
formance machine learning algorithm renowned for its 
accuracy in LULC classification.

While existing research in Djelfa city using remote 
sensing images on the GEE platform is limited, this study 
fills the gap by providing a comprehensive 45-year assess-
ment of land use changes, thus contributing valuable em-
pirical data for land use policies and sustainable planning 
in the region. The research is instrumental in understand-
ing the spatial dynamics of land use changes, preventing 
resource misallocation, and enhancing land management 
in Algeria.

Materials and methods 

Study area 
The study is focused on the capital city of Djelfa Prov-
ince, situated in the central region of northern Algeria. It 
is positioned approximately 300 km south of the country’s 
capital. The city is located within the geographic coordi-
nates of 34° 31’ to 34° 48’ North latitude and 3° 4’ to 3° 21’ 
East longitude. Encompassing an area of 542.17 km2, the 
study area exhibits distinct climatic features, predomi-
nantly classified as semi-arid. The prevailing climatic con-

ditions in the study area are indicative of a semi-arid cli-
mate, characterized by an annual average precipitation 
ranging between 200 mm and 500 mm. The climate is typ-
ified by hot semi-arid summers, with maximum temper-
atures reaching up to 33 °C, contrasted by cold subtrop-
ical winters, during which temperatures can drop below 
0°C. Geographically, the study area is situated within a re-
gion marked by plateaus, varying in altitude between 900 
m and 1400 m (D.P.S.B, 2020) (Figure 1).

Figure 1. The study area
Source: ESRI Map including World Topographic Map and World Hillshade
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Data collection
This study utilized data primarily from Landsat TM/

OLI for remote sensing imagery, digital elevation model 
(DEM) for topographic analysis, and various geographic 
and socioeconomic datasets (Table 1). Specifically, we em-
ployed Landsat 5 TM for 1990 and 2005, and Landsat 8 OLI 
for 2020 due to their relevance in LULC analysis, detailed 
in Table 2. These images facilitate the identification of land 
use and land cover transitions (Midekisa et al., 2017) and 
were utilized as inputs for the analysis of land use and land 
cover changes. To clarify, classification was conducted on 
three individual years within the specified period (Feng et 
al., 2020; Rawat & Kumar, 2015), avoiding any implication 
of continuous annual study. 

The term ‘ground truth data’ refers to actual observa-
tions used as training samples to develop the land classifi-
cation model, detailed in Table 3. This includes data from 
field surveys and digitized high-resolution images from 
Google Earth. The employment of these ground truth data 
was critical in developing three distinct classified images 
for the respective years, ref lecting the diverse LULC class-
es within Djelfa city (Wagle et al., 2020; Zadbagher et al., 
2018).

Image preprocessing
In this study, GEE was utilized for its extensive repository 
of satellite imagery, known for radiometric and geometric 
corrections. Our preprocessing involved specific scaling 

Table 1. Factors influencing the LULC changes. 

Type Code Name Source

Socioeconomic 
factors

TMI Topographic map 
index

https://www.earthdata.nasa.gov/sensors/srtm  
Shuttle Radar Topography Mission (SRTM)

DFR Distance from 
roads

https://www.openstreetmap.org/  
Downloaded the shapefile of Road Open Street distance 
method Map 
Road network (Town plan for the wilaya of Djelfa 2023)

DFB Distance from 
the built up land

https://earthexplorer.usgs.gov/  
Downloaded the shapefile of built up area (Town plan for the 
wilaya of Djelfa 2023)

Natural
factors

DFS Distance to 
stream

https://www.hydrosheds.org/ 
Download toposheet map of study area

SLP Slope gradients https://www.earthdata.nasa.gov/sensors/srtm  
Shuttle Radar Topography Mission (SRTM)

ELV Elevation https://www.earthdata.nasa.gov/sensors/srtm  
Shuttle Radar Topography Mission (SRTM)

Table 2. Landsat image collections used for classification

Year Satellite Sensor RBG composite 
bands

Spatial 
resolution Period of collection

1990 Landsat 5-TM 3-4-5 30m 01/01/90–31/12/90

2005 Landsat 5-TM 3-4-5 30m 01/01/05–31/12/05

2020 Landsat 8-OLI 4-5-6 30m 01/01/20–31/12/20

TM Thematic Mapper, OLI Operational Land Image

Source: USGS

Table 3. Number of Training samples of LULC units for 1990, 2005, and 2020

LULC units
Number of Training samples

1990 2005 2020

Urban Area 28 30 29

Agricultural Land 23 31 31

Forest Land 46 46 44

Steppe 29 29 29

Bare land 44 44 43

Total 170 180 176

https://www.earthdata.nasa.gov/sensors/srtm
https://www.openstreetmap.org/
https://earthexplorer.usgs.gov/
https://www.hydrosheds.org/
https://www.earthdata.nasa.gov/sensors/srtm
https://www.earthdata.nasa.gov/sensors/srtm
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techniques to adjust image values for true surface ref lec-
tance, crucial for accurate land cover classification (Car-
neiro et al., 2021; Mugiraneza et al., 2020; Roy et al., 2020). 
Cloud masking was conducted using a Landsat Simple 
Cloud Score algorithm, as inf luenced by the approaches 
outlined in (Carneiro et al., 2021). To further enhance the 
classification process, NDVI and NDBI indices were com-
puted, serving as supplementary attributes to enrich the 
dataset with vital details on vegetation and built-up areas 
(Barnieh et al., 2020; Feng et al., 2016; Hackman et al., 2017, 
2020; Prasomsup et al., 2020; Yu et al., 2014).

Topographic Analysis
In our methodology, the Topographic Index (TI) was cal-
culated using the widely accepted formula developed by 
(Beven et al., 1984), utilizing Aster GDEM data. TI, which 
quantifies relative humidity, is integral to understanding 
moisture dynamics and their implications on land charac-
teristics.

Analysis of Spatial Variables
The analysis of spatial variables was conducted using 
Cramer’s V to distinguish between static and dynamic 
properties. Specifically, distance from roads and distance 
from settlements were identified as dynamic factors, 
while other variables were considered static. The derived 
Cramer’s V values were adopted as weighting factors for 
the spatial variables and incorporated into the MC mod-
el for future projections. The transformation of categori-
cal maps into continuous maps was facilitated using the 
Evidence Likelihood transformation, aiding in a more re-
fined and comprehensive analysis of land cover transitions 
(Mas et al., 2014).

Image classification and accuracy assessment
In this study, we employed the GEE, an open-access cloud-
based platform, for image collection, supervised classi-
fication, and accuracy assessment, utilizing AI machine 
learning algorithms. Specifically, the SVM classifier was 
used within the GEE for accurate LULC classification 
(Mantero et al., 2004; Wahap & Shafri, 2020). The GEE code 
editor was a valuable tool for analysis and customization 
via programming code. Training samples were crucial for 
this process and are detailed in Table 3. For each year, 70% 
of the samples were used for training the SVM classifica-
tion algorithm, and the remaining 30% for testing, focus-
ing on SVM’s capability to minimize misclassified pix-
els (Shaharum et al., 2020). Quantitative accuracy of the 
classified LULC maps was measured using two key met-
rics: Overall Accuracy (OA) and the Kappa index (K). OA is 
the ratio of correctly classified pixels to the total number 
of pixels, and it’s calculated using equation (1). The Kappa 
index measures agreement by chance in the classification 
process, and it’s represented by equation (2).

OA=
xii=1

n
∑

N

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⋅100

 

(1)

Where xi represents the number of correctly classified 
pixels for each class and N is the total number of pixels.

K =
a∑ − ef∑

N − ef∑  

(2)

Where a is the frequency of correct classifications for 
each category, ef is the expected frequency of correct clas-
sifications by chance, and N is the total number of pixels.

We also implemented the MLP model to refine the land 
cover classification process, training it with 75% of the 
data and testing with the remaining 25%. This ensured ro-
bust predictive performance, with the optimal MLP train-
ing parameters detailed in Table 8. Support vectors in the 
SVM framework were instrumental in defining the hyper-
plane, thereby maximizing the separation between classes 
(Liu et al., 2020). This process and the resulting classified 
images are visualized in Figure 2.

Change detection and transition analysis using LCM
We utilized the LCM integrated with IDRISI Selva soft-
ware to analyze and predict land use changes in Djelfa city 
for the periods 1990-2005 and 2005-2020, employing cat-
egorized maps from Landsat imagery (Abijith & Sarava-
nan, 2022; Mishra et al., 2018; Shawul & Chakma, 2019). 
The LCM’s application included: 
• Calculating annual rate of change for each LULC class.
• Generating FROMTO change maps and spatial trend 

maps using a third-degree polynomial function (East-
man, 2020).

• Determining the extent of land surface change between 
LULC states to understand the dynamics over the des-
ignated periods (Singh, 1989).

In-depth evaluations of land use dynamics and biodi-
versity impacts were conducted, with the findings offer-
ing insights into the anthropogenic inf luences on various 
LULC classes. The percentage change is computed using 
Equation (3) to quantify the extent of changes (Hussien et 
al., 2023).

p= ( AI −Ae) ⋅100
Ae  

(3)

Where AI is the area in a later LULC map, and Ae is the 
area in an earlier LULC map. The analysis utilized the 
post-classification approach for a comprehensive evalu-
ation of LULC dynamics. The specific methodologies and 
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outcomes of LCM within the context of Djelfa city are now 
detailed and precise, addressing the need for specificity.

Consolidated Modeling and Prediction Analysis
For our LULC change prediction, the MLP and MC mod-
els were utilized (Mishra & Rai, 2016). The MLP model, 
noted for its 83.96% accuracy rate, facilitated the creation 
of potential change maps as crucial inputs for further 
MC analysis, aiming to project future land cover chang-
es with associated probabilities (Gashaw et al., 2018). In-
itial modeling involved using transition potential im-
ages from key historical years as part of the predictive 
groundwork.

The study also integrated various natural and anthro-
pogenic factors affecting land cover, utilizing a combi-
nation of topographic, demographic, and environmental 
data (Kim & Newman, 2020; Mirici et al., 2018). This inte-
gration was critical in predicting transition potentials and 
understanding the implications of various land cover driv-
ers on future land use scenarios. An empirical analysis of 
shifts in land cover was conducted, focusing on quanti-

fying changes and predicting future scenarios (Eastman, 
2015; Karul & Soyupak, 2003). A rigorous validation phase 
followed the initial modeling to ensure the model’s predic-
tive accuracy (Chaudhuri & Clarke, 2014).

The simulation results from these models aimed to pro-
vide a nuanced understanding of the LULC changes over 
time. This involved mapping the gains and losses within 
distinct LULC classes to offer insights into the dynamics 
of land use changes and the effectiveness of our modeling 
approach (Hasan et al., 2020; Shaharum et al., 2020).

Model validation
The reliability of our predictive models was ensured 
through a rigorous validation process subsequent to the 
initial calibration phase. This involved a two-step ap-
proach where model parameters were first fine-tuned, fol-
lowed by a rigorous assessment of predictive accuracy. The 
validation phase primarily utilized the Kappa coefficient, 
a widely recognized metric for measuring the accuracy of 
predictive models (Congalton, 1991; Singh et al., 2018). The 
process involved comparing forecasted LULC data gener-

Figure 2. Overview of the methodology of LULC maps classification and prediction in the Djelfa city
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ated by the model against a set of reference data to eval-
uate the model’s predictions (Bununu, 2017; Congalton, 
1991). Insights gained from this validation phase contrib-

uted to understanding the potential to project LULC sce-
narios for future years, thereby extending the applicability 
and relevance of the study’s findings.

Results

Our key findings and conclusions can be summarized as 
follows:

LULC Mapping and Accuracy
The study conducted multitemporal LULC mapping for 
1990, 2005, and 2020 with overall accuracies of 90%, 94%, 
and 94% respectively. Kappa coefficients indicated high re-
liability across all years. The SVM classification, visualized 
in Figure 3, and the detailed proportions in Table 4, revealed 

significant land cover dynamics over the three decades. A 
notable trend was the decrease in Bare land and an increase 
in Urban Area and Steppe, indicating a shift towards an-
thropogenic land use. The classification and transitions are 
detailed in the confusion matrix (Table 5) and visualized 
changes (Figures 4 and 5). The detailed weighting values of 
explanatory variables and transitions between LULC class-
es are provided in Table 6 and Table 7, with the driving forc-
es and their significance presented in Table 8.

Figure 3. SVM classification results in GEE of (A) 1990, (B) 2005 and (C) 2020.

Table 4. Proportion of LULC units in 1990, 2005 and 2020

LULC unit
1990 2005 2020

Area (Ha) Area (%) Area (Ha) Area (%) Area (Ha) Area (%)

Urban Area 924.09 1.75 1405.12 2.66 2742.30 5.20

Forest Land 6174.25 11.70 6128.76 11.61 5344.06 10.12

Agricultural Land 768.25 1.46 1051.47 1.99 547.05 1.04

Bare land 27944.39 52.94 28632.48 54.24 24976.58 47.32

Steppe 16974.66 32.16 15567.96 29,49 19175.79 36.33

Total 52785.64 100.00 52785.79 100.00 52785.79 100.00
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Table 5. Confusion matrix of the LULC classification in 1990, 2005 and 2020

LULC 1990

Urban Area Forest Land Agricultural Land Bare Land Steppe

Urban Area 17 0 0 0 0

Forest Land 0 31 0 0 3

Agricultural Land 0 0 14 0 0

Bare land 0 0 1 32 3

Steppe 0 1 0 3 16

LULC 2005

Urban Area Forest Land Agricultural Land Bare Land Steppe

Urban Area 21 0 0 0 0

Forest Land 0 28 0 0 1

Agricultural Land 0 0 23 0 1

Bare land 1 0 2 26 1

Steppe 0 0 0 1 15

LULC 2020

Urban Area Forest Land Agricultural Land Bare Land Steppe

Urban Area 22 0 0 0 0

Forest Land 0 25 0 0 4

Agricultural Land 0 0 13 0 0

Bare land 0 0 0 27 0

Steppe 0 0 0 2 23

Table 6. Markov transitional probability matrix of land use types in Djelfa city based on (1990 to 2005), 
(2005 to 2020)

LULC 1990

Urban Area Forest Land Agricultural Land Bare Land Steppe

LU
LC

 20
05

Urban Area 0.68 0.00 0.01 0.24 0.07

Forest Land 0.00 0.84 0.00 0.00 0.16

Agricultural Land 0.02 0.10 0.30 0.27 0.31

Bare Land 0.02 0.00 0.02 0.84 0.12

Steppe 0.01 0.05 0.02 0.28 0.64

LULC 2005

Urban Area Forest Land Agricultural Land Bare Land Steppe

LU
LC

 20
20

Urban Area 0.71 0.01 0.01 0.13 0.14

Forest Land 0.00 0.81 0.00 0.00 0.18

Agricultural Land 0.05 0.05 0.16 0.21 0.53

Bare Land 0.05 0.00 0.01 0.78 0.16

Steppe 0.01 0.02 0.01 0.14 0.82
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Figure 4. Gains and losses in various LULC between 1990 and 2005: (A) Urban Area, (B) Forest Land, (C) 
Agricultural Land, (D) Bare land, and (E) Steppe

Figure 5. Gains and losses in various LULC between 2005 and 2020: (A) Urban Area, (B) Forest Land, (C) 
Agricultural Land, (D) Bare land, and (E) Steppe
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Table 7. Driving forces with Cramer’s V

Driving force Cramer’s V

Topographic map index 0.44

Distance from roads 0.49

Distance from the built up land 0.41

Distance to stream 0.27

Slope gradients 0.39

Elevation 0.62

Table 8. MLP model variable value and accuracy rate

Variables Results

Hidden layer nodes 17

Start learning rate 0.01

End learning rate 0.001

Momentum factor 0.5

RMS 0.01

Iteration 10000

Training RMS 1

Testing RMS 1

Accuracy rate (%) 83.96

Skill measure 0.6791

Modeling LULC Transformation
The MLP method was employed for modeling the trans-
formation potential for each LULC class. To facilitate this, 
an input dataset for the MultiLayer Perceptron, including 
spatial variables like elevation, distance from roads, and 
topographic index, was compiled and is illustrated in Fig-
ure 6. This groundwork led to the identification of nine sig-
nificant transformations, which were then modeled and 
visualized in Figures 7 and 8. The process involved using 
the spatial variables mentioned earlier, leading to the gen-
eration of transition probability maps. These transitions 
underscore the region’s dynamic land use, with a particu-
lar focus on the expansion of urban areas and the transfor-
mation of natural land cover types.

Model Validation
The validation process assessed the model’s predictive ac-
curacy using the Kappa coefficient (Table 9), comparing 
forecasted data with actual classified maps (Figure 9). The 
high Kappa value obtained signifies a robust fit and reli-
ability of the model’s predictions, suggesting the model’s 
efficacy in forecasting future land cover dynamics. The 
kappa index values of the simulated LULC map for 2020, 
demonstrating the effectiveness of our model predictions, 
are presented in Table 10. This validation confirms the 
models’ applicability for future LULC projections and the 
robustness of their predictions (Pontius, 2000).

Figure 6. Input dataset for MultiLayer Perceptron: (A) Distance Road, (B) Distance stream hydro, (C) Distance 
urban, (D) Slope, (E) Elevation (DEM), and (F) Topographic map index
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Figure 7. Major transformation. during 1990 to 2005; (A) from steppe to Bare land, (B) from 
steppe to Agricultural Land, (C) from Agricultural Land to Forest Land, (D) from Bare land to 
Agricultural Land, (E) from Bare land to Urban Area and (F) from Forest Land to steppe

Figure 8. Major transformation. during 2005 to 2020; (A) from Agricultural Land to steppe, (B) 
from Agricultural Land to Forest Land, (C) from Bare land to Urban Area, (D) from Bare land to 
steppe, (E) from Agricultural Land to Urban Area and (F) from Forest Land to steppe
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Table 10. The k index values of the simulated LULC map of 2020

Index Value

Kno 0.9155

Klocation 0.8999

KlocationStrata 0.8999

Kstandard 0.8930

Future LULC Prediction
Future predictions using the MC model and LCM were 
validated and projected for 2035. Noteworthy transforma-
tions were categorized based on historical trends, with a 
particular increase in forested areas. The future LULC map 
for 2035, derived from the model, is presented in Figure 10, 
with a projected increase in Steppe and Urban Area, re-
f lecting ongoing land rehabilitation efforts and urban ex-
pansion. The LULC coverage of classified and simulated 
images, which provides a comparative view of actual ver-
sus predicted land cover scenarios, is detailed in Table 11.

Table 9. LULC change prediction validation based on the actual and projected 2020 LULC

LULC Types
Projected 2020 Actual 2020

Area (Ha) Area (%) Area (Ha) Area (%)

Urban Area 2742,30 5,20 2607,71 4,94

Agricultural Land 5344,06 10,12 5568,87 10,55

Forest Land 547,05 1,04 580,47 1,10

Steppe 24976,58 47,32 24862,69 47,10

Bare Land 19175,79 36,33 19166,05 36,31

Total 52785,79 100,00 52785,79 100,00

Figure 9. Observed and predicted LULC maps: (A) 2020 LULC observed, (B) 2020 LULC 
predicted

Figure 10. Predicted LULC map for 2035
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Discussion

In our study of multitemporal LULC mapping using SVM 
classification of Landsat imagery and auxiliary data with-
in the GEE platform, we achieved high classification accu-
racy, underscoring the SVM method’s robustness (Li et al., 
2017). However, certain disparities in urban patterns be-
tween 1990 and 2005 were observed, notably in some urban 
areas undergoing significant changes. These variations 
may be attributed to challenges in acquiring high-qual-
ity images in dense cloud cover areas and phenological 
changes between seasons (Gong et al., 2016). Additional-
ly, while employing images from December 2015 for our 
analysis, we postulated minimal land-cover change from 
our last ground truth sampling in May 2015, a factor that 
might have inf luenced our results.

The classification system occasionally diverged from 
global definitions, possibly leading to the misclassification 
of orchards and dense mixed crops as forests, particularly 
relevant in our ecological assessments (Gong et al., 2013). 
Recognizing such discrepancies is vital as they could con-
tribute to the observed alterations in urban and other land 
cover categories. Despite these challenges, the overall ac-
curacy rates of over 82.0% and corroborative visual obser-
vations of the maps emphasize SVM’s significant utility 
and efficacy as a tool for LULC classification.

We reaffirm the strength and high accuracy of SVM 
classification in producing precise and consistent LULC 
maps and recognize the need for ongoing research. Future 
studies should explore the nuanced challenges and limi-
tations encountered, particularly in urban area classifi-
cation. Addressing these challenges will enhance the re-
liability and applicability of LULC maps, contributing to a 
more comprehensive understanding and management of 
land use and cover changes (Li et al., 2017). This continued 
effort is invaluable in advancing our understanding and 
appreciation of the dynamic and complex nature of land 
use classification.

Understanding LULC transitions is crucial for effec-
tive ecological and environmental management and gain-
ing insights into future land use changes. Djelfa city, often 

referred to as the gateway to the Sahara or the capital of 
the steppes, provides a unique context for studying these 
transitions. Its landscape is marked by the Sennalba for-
est to the west, expansive steppe lands in the north, ur-
ban expansion to the east, and potential urban hubs in the 
south. Our study focused on analyzing LULC dynamics in 
Djelfa city over the past three decades and predicting fu-
ture changes up to 2035. We employed various methodol-
ogies, including remote sensing, Geographic Information 
Systems (GIS), and a Multi-Layer Perceptron Neural Net-
work (MLPNN)-based MC model, to comprehensively ex-
amine these dynamics. 

The results revealed that Djelfa County has experienced 
a notable increase in urban expansion, driven by popula-
tion growth and rural-to-urban migration This trend was 
particularly pronounced from 1990 to 2005 when the ur-
ban area expanded by 0.91% (D.P.S.B, 2020). Between 1987 
and 1998, the population of Djelfa increased from 83,162 to 
158,644 inhabitants, representing an annual growth rate 
of 6.67%. This surge can be partially attributed to the secu-
rity situation between 1992 and 2001, which led rural res-
idents and those from neighboring communities to mi-
grate towards the city of Djelfa. From 1998 to 2008, the 
population growth accelerated, with the number rising to 
311,931 inhabitants, at a growth rate of 6.6%—significant-
ly higher than the national average. This growth was due 
to improved social conditions as evidenced by increased 
birth rates and decreased mortality rates. Moreover, the 
National Office of Statistics reports a positive internal 
migratory balance of 7,676 individuals and a positive ex-
ternal migratory balance of 1,660 individuals for Djelfa 
during this decade (ONS, 2011). These statistics not only 
substantiate a population increase but also support the ur-
ban expansion observed, correlating with the demograph-
ic growth and migration patterns.

Bare land, which covered a significant portion of the 
study area in 1990, experienced changes due to soil degra-
dation, overgrazing, and pressures on rangelands. These 
changes may have been inf luenced not only by local land 

Table 11. LULC coverage of classified and simulated images

LULC units
1990 2005 2020 2035

Area (Ha) Area (%) Area (Ha) Area (%) Area (Ha) Area (%) Area (Ha) Area (%)

Urban Area 924.09 1.75 1405.12 2.66 2742.30 5.20 3588.93 6.80

Forest Land 6174.25 11.70 6128.76 11.61 5344.06 10.12 5576.99 10.57

Agricultural Land 768.25 1.46 1051.47 1.99 547.05 1.04 547.42 1.04

Bare Land 27944.39 52.94 28632.48 54.24 24976.58 47.32 24061.95 45.58

Steppe 16974.66 32.16 15567.96 29.49 19175.79 36.33 19010.48 36.01

Total 52785.64 100.00 52785.79 100.00 52785.79 100.00 52785.79 100.00
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management practices but also by broader environmental 
changes, including climate change, which can exacerbate 
soil erosion and desertification processes (IPCC, 2019; UN-
OHRLLS, 2015). Agricultural land increased modestly from 
1990 to 2005, mainly due to the abandonment of agropasto-
ral activities during economic and security crises.

The forested area exhibited a decline, primarily attrib-
uted to anthropogenic pressures like illicit logging and 
overgrazing, while steppe areas witnessed significant ex-
pansion, partly due to land rehabilitation and silvicultur-
al reclamation initiatives. Over the last decade to fifteen 
years, substantial rehabilitation efforts have been under-
taken by the High Commission for Steppe Development 
(HCDS) and the National Forest Research Institute (INRF) 
Djelfa station. However, it’s worth noting that this expan-
sion isn’t solely due to rehabilitation activities; microcli-
matic factors within the study area have also played a role 
in fostering steppe regeneration (Dudley & Phillips, 2006; 
World Economic Forum, 2023). The observed changes in 
our study area align with broader regional trends noted in 
other research, which have documented similar shifts in 
land cover types due to a combination of human activities 
and environmental changes (Alvarez Martinez et al., 2011).

The LULC classification and change analysis results cor-
roborate the conversion of bare land into larger urban are-
as and steppe regions, with minor changes observed in ag-
ricultural and forested lands. This rise in steppe areas can 
be attributed to the aforementioned anthropogenic pres-
sures, alongside the mentioned rehabilitation and silvicul-
tural reclamation initiatives. Further research is needed 
to disentangle the relative impacts of these factors and to 
understand their interaction with climate change (Hart & 
Mouton, 2005; Keohane & Victor, 2011; Senge, 2008)

The observed land cover changes in our study from 2005 
to 2020, such as decreasing forest cover and expanding ur-
ban and steppe areas, occur within a broader context of eco-
logical fragility characteristic of arid and semi-arid regions. 
These regions, accounting for about 40% of Earth’s land sur-
face and including parts of North Africa, are particularly 
vulnerable to environmental changes (White & Nackoney, 
2003; Yan et al., 2019). The trends noted in our study area 
are ref lective of the challenges and dynamics experienced 
in these ecologically sensitive regions and align with docu-
mented patterns in similar contexts (Hishe et al., 2021). We 
acknowledge the importance of considering these broader 

ecological and geographical characteristics in our analysis 
and will further explore how these general trends manifest 
specifically in Algeria or Northwest Africa. 

The projected LULC map for 2035 forecasts a further in-
crease in urban areas, underscoring urbanization’s con-
tinued inf luence on land use dynamics. This projection 
integrates a multi-index approach that improves the dif-
ferentiation between urban build-up and bare soils, sig-
nificantly enhancing classification accuracy, particularly 
in semi-arid regions like Djelfa. Notably, our model re-
spects natural and man-made constraints, avoiding ur-
ban expansion into impractical areas such as the protected 
forest of Senelba, which aligns with the current concentric 
and compact urban form of Djelfa and similar cities with-
in the Algerian steppe. Additionally, incorporating scenar-
ios such as ecological protection, as suggested by (Xu et 
al., 2019), indicates a restrained urban spread compared 
to historical trends, which further confirms our projec-
tions’ alignment with sustainable development practices. 
The precision of these projections could be improved with 
more detailed demographic data, yet the incorporation 
of various spectral indices and the consideration of geo-
graphical constraints assure the general reliability of our 
results. Future expansions are modeled to occur in viable 
areas, avoiding slopes or other inaccessible regions, thus 
ref lecting a realistic trajectory of urban growth.

Our study highlights the dynamic nature of LULC 
changes in Djelfa city over the past 30 years and provides 
valuable insights for future land use planning. Sustainable 
urban development and effective land management strat-
egies are essential to mitigate the environmental and so-
cial consequences of these changes. Monitoring and man-
aging the pace and extent of urban expansion are critical 
to achieving sustainable development while preserving 
the environment. Furthermore, the integration of demo-
graphic data into future studies would provide a more ho-
listic understanding of the drivers behind these changes, 
contributing to informed decision-making and effective 
management practices. Our use of ANN techniques has 
improved the reliability of our findings, reducing potential 
expert bias and inaccuracies in land cover analysis. How-
ever, it’s important to note that the MLPNNMC approach 
may not cover all possible LULC transitions, and further 
research may be needed for applications involving a wid-
er range of transitions, particularly in semi-natural areas.

Conclusion

In conclusion, this study utilized geospatial techniques 
and remote sensing data to analyze the temporal evolu-
tion of land use and land cover patterns in Djelfa city. By 
employing Landsat 5 and Landsat 8 imagery and employ-
ing advanced models, we projected land use changes up to 

2035. Our validation process demonstrated the robustness 
of our approach, with an accuracy exceeding 83%, affirm-
ing the predictive capabilities of our composite model.

The integration of remote sensing, GIS, and land use 
change models proved to be a powerful tool for compre-
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hensively mapping and monitoring land use transitions. 
Through SVM algorithms in GEE we generated accurate 
land use maps for pivotal years, highlighting the inf luence 
of auxiliary variables like elevation, roads, and settlement 
patterns on future land use changes.

Our analysis revealed a dominant trend towards urban 
expansion, resulting in a projected 6.80% increase in built-
up areas by 2035. Additionally, our implementation of the 
Multi-Layer Perceptron MC model effectively estimated 
future land use dynamics, emphasizing the potential of 
remote sensing and GIS integration in land use analysis 
and prediction.

While our findings underscore the significance of our 
methodology for sustainable development and land man-

agement, we acknowledge the limitations related to the 
moderate resolution of Landsat imagery. This suggests 
room for improvement in image quality and prediction 
techniques for future research.

In summary, this research contributes to understand-
ing and addressing the complex dynamics of land use in 
Djelfa city. By advocating for more comprehensive da-
tasets, including climate, political, and urban develop-
ment factors, we can enhance the accuracy of our predic-
tive models. Replicating this methodology in other urban 
contexts will further enrich our insights into land use 
changes, guiding informed decisions for sustainable de-
velopment while mitigating the environmental impacts of 
urban growth.
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