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Abstract

The large-scale pixel-based land use/land cover classification is a challenging task, which depends on 
many circumstances. This study aims to create LULC maps with the nomenclature of Coordination of 
Information on the Environment (CORINE) Land Cover (CLC) for years when the CLC databases are not 
available. Furthermore, testing the predicted maps for land use changes in the last 30 years in Hunga-
ry. Histogram-based gradient boosting classification tree (HGBCT) classifier was tested at classification. 
According to the results, the classifier, with the use of texture variance and landscape metrics is capable 
to generate accurate predicted maps, and the comparison of the predicted maps provides a detailed im-
age of the land use changes.
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Pixel and Object-based Land Cover Mapping and 
Change Detection from 1986 to 2020 for Hungary 
Using Histogram-based Gradient Boosting 
Classification Tree Classifier

Introduction

Land use and land cover (LULC) changes can alter the 
ecosystem and its services, and they can indicate so-
cio-economic changes that have occurred in a par-
ticular area (Wulder et al., 2018). By analyzing the 
LULC changes in detail, we can estimate their com-
plex effects on the environment (impact on landscape 
structure, biodiversity) and agricultural complexes. 
With the acceleration of LULC changes that occurred 
with urban expansion, economic growth, and explic-
itly/implicitly increasing human needs, the monitor-
ing of LULC changes became a key tool that could be 
used in work associated with environmental protec-
tion and sustainable development. LULC maps are of-
ten used as base data in environmental studies con-
ducted in fields such as agriculture (Bezdan et al., 
2019), hydrology (Tobak et al., 2019), ecology (Csikós 

& Szilassi, 2021), urbanization (Steurer & Bayr, 2020), 
and change detection (Szilassi, 2017). LULC mapping 
is a widely discussed topic in the field of remote sens-
ing because remote sensing can provide tools, and re-
liable and extensive data with a high temporal and 
spatial resolution for LULC mapping (Townshend et 
al., 1991). It is a challenging classification task, be-
cause land use and its categories (nomenclature) de-
pend on the socio-economic environment, thus each 
country or region will have its own set of land use 
classes (Choudhury & Jansen, 1999). Thus, the num-
ber of land use classes has become large and interclass 
separability small, which makes training data unbal-
anced and difficult to classify. Moreover, in most cas-
es, the efficiencies of the spectral values obtained from 
satellite images are small. Thus, new variables have to 
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be incorporated into land use classification, which is 
computationally challenging. 

The dataset dimensions (size and number of varia-
bles) greatly depend on the scale of mapping and the 
amount of data used. In large-scale land use mapping, 
we need to consider the spectral differences among 
the satellite images and the exponential growth of the 
dataset as new variables are added, which causes the 
modeling and prediction times to increase. Therefore, 
the selection of new data required for land use classi-
fication through the application of different sensors in 
combination (Zhou et al., 2018), use of multitemporal 
images (Bui & Mucsi, 2021), or extraction of new fea-
tures (indices, textures, and metrics) from the original 
image is important (Gudmann et al., 2020; Zhou et al., 
2018). In land use change mapping, the use of different 
sensor data or multitemporal images is not possible in 
most cases because of the limitations of old datasets. 
Thus, the only option available is to extract new fea-
tures, such as spectral indices, texture data, and seg-
mentation from the original satellite images. 

In this study, large-scale LULC maps were creat-
ed on four dates between 1986 and 2020 based on 
Landsat images, their derivates, and CLC databases. 
Using these maps, pixel-based change analyses were 
performed to estimate a detailed picture of the envi-
ronmental changes that had occurred. Two research 
questions were tested: first, can we generate LULC 
maps with CLC nomenclature, accurate enough to 
use them as a base for a pixel-scale change analy-
sis? Second, if the pixel-scale change analysis is per-
formed based on the generated maps, would the re-
sults provide more details than the CLC change 
layers? 

To answer these questions, first, with the use of 
a histogram-based gradient boosting classification 
tree, LULC maps were generated. Second, the im-
provement in land use classification was estimated 
using pixel-based comparison. Furthermore, pix-
el-based change detection was performed using the 
classified maps and the results were compared with 
the CLC datasets.

Data and methods

Study area
The study area selected was the entire territory of 
Hungary, located in the Carpathian Basin (Figure 
1), with an area of 93 023 km2. Most of the land area 
of this east-central European country is occupied by 
lowlands (more than 80% of the land area is at an el-
evation between 75 and 200 m above sea level) and 
only 0.6% of its land area is at an elevation more than 
500 m above sea level. The soil in most areas of the 
country has high organic content, which favors agri-

culture (Mezősi, 2017). Most of the land area of the 
country (78.7%) is productive because of its specific 
soil type and favorable climate, and more than half of 
the land area (57.1%) is used for agriculture (Hungar-
ian Central Statistical Office, 2020). The agricultur-
al land has a one-sided structure dominated by small 
holdings (<5 ha in size), which account for more than 
80% of the agricultural holdings in the area (Europe-
an Commission - DG Agriculture and Rural Devel-
opment, 2020). Most of the landscape of the country 

Figure 1. Study area: Hungary in East-Central Europe
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is fragmented, with low patch sizes, because of its ag-
ricultural land structure. According to the CLC data-
bases (Buttner & Kosztra, 2017), more than half of the 
area of Hungary was covered by arable lands (Figure 
2). Besides, the main land cover categories are the for-
ests (~18%), pastures (7%), scrub and/or herbaceous 
associations (~5-7%), heterogeneous agricultural area 
(~5%), and urban fabric (~4%).

Data
The reference data of our study was the CORINE Land 
Cover datasets. These databases were created using a 
1:100 000 scale, a minimum mapping unit (MMU) of 
25 ha, and a minimum width of 100 m for the linear 
elements (Mari & Mattányi, 2002). The nomenclature 
of CLC data is hierarchically structured, with three 
levels: 5 classes at level 1, 15 classes at level 2, and 44 
classes at level 3. Thanks to the detailed nomencla-
ture, spatial (CLC90: 27 countries; CLC18: 39 coun-
tries) and temporal coverage (from 1990, five times), 
and thematic accuracy (>85%), the CLC database is 
the basis of various research activities. To provide fur-
ther support to these studies, change layers were cre-
ated and the changes exceeding 5 ha were mapped. 
Even with a small MMU, the change layers could not 
display most of the changes that had occurred at the 
parcel level because the average size of those chang-
es was below 5 ha (Volker et al., 1998) (Figure 3). In 

this study, the CLC datasets CLC90, CLC00, CLC06, 
CLC12, and CLC18 were used as reference datasets 
in land use classification. The CLC change layer was 
used as the reference in the change analysis. The CLC 
databases were downloaded from the website of the 
Copernicus Land Monitoring Service at https://land.
copernicus.eu/pan-european/corine-land-cover.

For the study, Landsat satellite images were select-
ed, because of the similarity of their spatial and spec-
tral resolutions. The data acquisition devices provided 
in the satellites are designed to take images, compa-
rable to one another, to facilitate data continuity and 
time-series analyses (Wulder et al., 2016). The Land-
sat images have a medium spatial resolution (30, 60, 
and 80 m), multispectral resolution (4–11 bands), and 
a 16-day temporal resolution (U.S.Geological Survey, 
2012). The image archive has global coverage and is 
freely available to any user (Wulder et al., 2019). Ten 
Landsat images were required to cover the study area, 
with low cloud cover and low temporal differences, 
which reduced the spectral image differences. Accord-
ing to these conditions, 4 dates were selected, with a 
large time interval: 1986, 2003, 2015, and 2020. The 
atmospherically corrected Landsat images with sur-
face reflectance were ordered and downloaded from 
the USGS Earth Resources Observation and Science 
Center Science Processing Architecture system on-
demand interface, available at https://espa.cr.usgs.gov/.

Figure 2. Distribution of CLC categories in Hungary in thousand hectares
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Derivatives describing the pixel neighborhood were 
calculated using the satellite images to provide the in-
formation required by the classification model. Two 
types of derivatives were generated: variance texture 
information with different kernel sizes (7x7, 17x17) 
and landscape metrics (the mean patch size, the total 
edge, mean shape index, and mean fractal dimension).

Methods
Data processing was conducted using ERDAS Imag-
ine 2020, QGIS 3.4.4, and ArcMap 10.3 software, and 
the classifications were performed in a Python 3.7 pro-
gramming environment (Figure 5). To reduce the loss 

of accuracy due to spectral differences, the Landsat im-
ages (10 images per date) were mosaicked along the 
same path (according to the WRS-2 catalogue, 4 paths: 
189, 188, 187, 186). The images along the paths (i.e., 
zones) were put together using manually drawn seam-
line polygons (Figure 4). These zones were the base ar-
eas of the classification. The created mosaics were used 
for texture and landscape metric calculations. For each 
band, texture images were generated using variance 
metric and two different kernel sizes: 7 × 7 (210 × 210 
m) and 17 × 17 (510 × 510 m) with ERDAS built-in tex-
ture calculator. For the landscape metrics, each satellite 
mosaics were segmented at a minimal size of 25 ha, and 

Figure 3. Parcel-level changes in an agricultural area, near Nagyszénás village.  
Based on the CLC polygons (yellow lines), no change occurred

Figure 4. The four zone and the changed/non-changed areas
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the metrics were calculated using the V-Late 2 ArcGIS 
tool (Comber et al., 2000). The six spectral bands (B, G, 
R, NIR, SWIR 1, and SWIR 2), texture bands, and land-
scape metrics of the satellite images were stacked to-
gether to generate images with 22 layers.

The CLC datasets were processed to identify the ar-
eas that have not changed over the last 30 years, in or-
der to reduce the uncertainty (<=15%) of the points 
from the CLC reference data. To this end, all CLC 
datasets were intersected with one another, and the 
polygons with the same CLC code were selected. 
These unchanged areas are 81.1% of the whole area, 
thus they are capable to represent the whole study 
area (Figure 4). The selected polygons were exported 
and were split into four parts like the stacked imag-
es (Figure 4). For each part, training and validation 
point sets were generated inside the selected polygons. 
The validation points were generated around the poly-
gons’ centroids, while the training points are random-
ly inside the polygons. The number of training points 
is less than 2% of the whole area.

From the training and validation points, 20 points 
per class per set were randomly selected and visually 
checked based on medium- and high-resolution sat-
ellite images and high-resolution aerial images at all 
dates. The result of the points verification showed all 
CLC categories reached the CLC base thematic accu-

racy, thanks to the use of the non-changed areas. The 
mean accuracy of the training points, on one date is 
greater than 93% (lowest, 2020: 93.7%, highest, 1986: 
95.18%), while the validation points’ mean accuracy is 
greater than 97% (lowest, 2020: 97.59%, highest, 1986: 
98.89%). 

Using the point sets created the values of each band 
of the stacked images and the codes of the CLC data-
bases were extracted and exported to the csv files. For 
each date and each part of the study area, one train-
ing and one validation file was created. These csv files 
were used in the HGBCT classification python script. 
The HGBCT is a type of gradient boosting machine 
(GBM) (Friedman, 2001). It is an ensemble machine 
learning method, which can use different base learn-
ers (decision trees and neural networks) for classifica-
tion or regression tasks. The GBM builds the model in 
a forward stage-wise mode, which allows for the op-
timization of an arbitrary differentiable loss function 
(Friedman, 2002). The HGBCT displays high accura-
cy when used with big datasets, is robust in handling 
missing values and unbalanced datasets, and has a low 
model building and prediction times. The classifica-
tion method was implemented using the grid-search 
parameter estimation (or hypertuning) method to es-
timate the best parameters that can be used in mod-
el building. For each zone, different models were built. 

Figure 5. Data processing workflow



Pixel and Object-based Land Cover Mapping and Change Detection from 1986 to 2020  
for Hungary Using Histogram-based Gradient Boosting Classification Tree Classifier

170 Geographica Pannonica • Volume 26, Issue 3, 165–175 (September 2022)

Results

Modeling and mapping
During the modeling and mapping stage, the HGBCT 
classification method was applied and tested. The test 
model building, and predictions were made using the 
training and validation sets of the datasets collected 
on different date’s datasets. As a result of hypertuning, 
the following hyperparameters of HGBCT enabled 
its highest accuracy: maximum number of iterations: 
1200 with early stopping applied, learning rate: 0.01, 
maximum depth of each tree: 20; minimum num-
ber of samples per leaf: 75, and maximum number of 
leaves allowed for each tree: 256. During model build-
ing, different values were observed, like overall accu-
racy (OVRA), kappa, and logarithmic loss. The overall 
accuracies of the gradient boosting models were be-
tween 83.35% (2015: Zone II.) – 92.63% (1986: Zone 
I.). The User’s accuracies (UAs) of the classifier were 
varied between 61.79% and 100%, 60.30% and 100%, 

60.61% and 100%, and 62.30% and 100% in 1986, 2003, 
2015, and 2020, respectively. More than half the class-
es (15 of 27) had UAs exceeding 90% and none of the 
classes had UAs below 60%. Only one class, the orig-
inally mixed, 242–Complex cultivation patterns, had 
a UA near 60%. The PAs were in the 56.49%–99.69%, 
56.34%–99.85%, 53.86%–100%, and 51.19%–100% 
ranges in 1986, 2003, 2015, and 2020, respectively. 
Most of the Producer’s accuracies (PAs) had high ac-
curacies as the UAs, with 17 of the 27 classes recording 
accuracies higher than 90%. Only the “Non-irrigated 
arable land” class has a low accuracy (51.19%–56.49%), 
it deserves to be highlighted because it has the largest 
extent in the study area thus, it has a huge impact on 
change mapping. The average overall accuracy of the 
models per date was between a small range of 85.99% 

– 87.33%. The kappa values of the models varied be-
tween 0.83 and 0.92, while the log loss values were be-

Figure 6. Classified maps of Budapest, the capital of Hungary, at different date
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tween 0.26 and 0.56. The appearances of the classified 
maps are compact and smooth (Figure 6). The differ-
ent values of the model building indicate that all mod-
els were suitable for accurate land use classification.

Land use change analysis
Land use change mapping was performed using a pix-
el-based comparison of the predicted maps of the HG-
BCT models. The maps were compared, and three 
land use change maps were generated (1986–2003, 
2003–2015, and 2015–2020). Using these maps, land 
use change matrixes were created and the changes 
were categorized into six groups based on the work of 
Feranec (Feranec et al., 2010). The six groups are ur-
banization, agricultural intensification, agricultural 
extensification, afforestation, deforestation, and water 
body construction. This categorization includes per-
manent and temporary land use changes, thereby en-
abling short- and long-time series analyses. However, 
the magnitude of the detected changes could be large. 
The first period of the changes is between 1986-2003. 
During this period, the socialist system has replaced, 
and the economy drastically changed. The most spec-
tacular sign of these changes was the fragmentation of 
agricultural land, due to compensations and privati-
zation. According to the CLC change layer, the mag-
nitude of the mean yearly area transformation was 
0.497% (1990–2000) (Table 1).

The biggest mean yearly changes were afforestation 
and deforestation, where the afforestation had a bigger 
magnitude, thus the proportion of the forest increased. 

Besides, the intensification and extensification of ag-
riculture had a similar value, with notable magnitude. 
According to the comparison of the predicted maps, 
the magnitude of changes was apparently larger than 
what the CLC change layer displayed (Table 2). 

Unlike, the CLC change layers, the biggest change 
was in agriculture (intensification and extensification), 
where intensification had a clearly bigger role. Like at 
CLC change layers, the afforestation and deforesta-
tion had a big magnitude, but the difference between 
the two opposite processes was much bigger. Further-
more, the urbanization process was clearly more se-
rious, than the values of the CLC. The second period 
was between 2003-2015. During this period, the driv-
ing force of the changes was Hungary’s accession to 
the EU, the responsibilities associated with it, and the 
significant subsidies for different projects. Due to this, 
the image of the production of Hungary had changed, 
which brought with it a change in land use/land cover. 
In the middle of the period, because of the econom-
ic crisis, the changes slowed down. However, after the 
recovery, large-scale industrial and public investment 
began. In this period, financially supported afforesta-
tion began. Despite this, the CLC change layers show 
only a slight change in the magnitude of the afforesta-
tion and a strong decrease in deforestation, while the 
agricultural changes remained significant, and accel-
erated. Besides, the rate of urbanization was slightly 
increased, and the water body construction was de-
creased. According to the predicted maps, the mag-
nitude of the agriculture (intensification and exten-

Table 1. Mean yearly categorized land use changes, based on CLC change maps

Date 1990–2000 2006–2012 2012–2018

Urbanization 0.0112% 0.0176% 0.0151%

Intensification of agriculture 0.0804% 0.1305% 0.042%

Extensification of agriculture 0.0728% 0.0865% 0.0215%

Afforestation 0.1815% 0.1831% 0.0938%

Deforestation 0.1465% 0.0948% 0.0848%

Water body construction 0.0052% 0.0035% 0.0023%

Total change 0.497% 0.516% 0.259%

Table 2. Mean yearly categorized land use changes, based on the predicted change 
maps

Date 1986–2003 2003–2015 2015–2020

Urbanization 0.184% 0.323% 0.71%

Intensification of agriculture 0.632% 0.866% 2.162%

Extensification of agriculture 0.428% 0.609% 1.424%

Afforestation 0.345% 0.538% 1.264%

Deforestation 0.178% 0.247% 0.726%

Water body construction 0.035% 0.061% 0.128 %

Total change 1.802% 2.643% 6.414%
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sification) changes was increased, compared to the 
previous period. Furthermore, the rate of affores-
tation had increased, and thus twice as much as de-
forestation. In addition, the rate of urbanization in-
creased by 0.134%/year. These results are in line with 
the economic measures introduced. The last period 
was only 5 years, between 2015-2020. During these 
5 years, the large public investments continued and 
began the growth of the housing sector. Further-
more, the financially supported afforestation contin-
ued with greater magnitude. These events are well dis-
cernible from the predicted map values. In this short 
time range, the urbanization, the afforestation, the de-
forestation, and the water body construction process-
es were accelerated, and thus their values were dou-
bled. While, agricultural changes remained the causes 
of the biggest impact, with a significant increase. On 
contrary to that, the CLC change layers show slowing 
changes. The rate of afforestation was halved, while 
the rate of the intensification of agriculture showed a 
bigger decrease. Besides, the extensification of agri-
culture decreased substantially. In the other catego-
ries, the magnitude of the slowing was small. In con-
clusion, at the CORINE Land Cover change layers, the 
magnitude of the area transformation can be between 
0.497%/year (1990–2000), 0.516%/year (2006-2012), 
and 0.259%/year (2012–2018) of the total area, with a 
decreasing rate. The main change flows are afforesta-
tion and deforestation and the transition of agricul-
tural lands. Considering deforestation, afforestation 
would have the largest impact on an area. The transi-
tions of the agricultural lands had a big impact in the 
first and second periods, while in the third period it 
had a small impact. Urbanization had a moderate im-
pact on the changes in every period. The water body 
construction had the smallest volume, with a contin-
uous decrease. While, according to the results of pix-
el-based analysis of the predicted maps, the magni-
tude of changes was apparently larger than what the 
CLC change layer displayed (1.802%/year – 6.414%/
year). The urbanization was between 0.184%/year and 
0.71%/year, which is significantly bigger, than the 
CLC values. The transformation of the agricultural 

lands dominates agricultural intensification, which is 
approximately one and half times the magnitude of 
extensification. These values are more than hundred 
times bigger than the values of the CLC change lay-
ers. The afforestation is almost twice deforestation, 
and thus, the size of the forests is on the increase, in 
the same way as the CLC layers, but the magnitude of 
these changes is bigger. The rate of water body con-
struction is low and is the smallest of all, but with con-
tinuous increase. Apart from these change categories, 
some uncategorized changes also exist, but their mag-
nitudes are low. Thus, they were not included in this 
study. The magnitude of the changes detected is large, 
because of the pixel level scale used. Using pixel-based 
categorization, permanent and temporary chang-
es can be predicted. Most of these changes are tem-
porary, and they appear in turns in a particular area, 
such as agricultural intensification and extensification 
or afforestation and deforestation. Further informa-
tion can be obtained by visually analyzing the maps. 
The visual analysis of the maps helps determine the lo-
calization and the level of permanency of the chang-
es. According to the analysis results, most changes 
were not permanent and were due to the behavior of 
the economy (cutting and replanting artificial forests, 
setting aside arable land, and crop rotation). Urbani-
zation and afforestation are two permanent changes. 
Urbanization is a one-way change (as mentioned ear-
lier) and thus, it is permanent. It appears mainly in 
and around the main cities of Hungary. Afforestation 
is not a permanent transformation, but if afforestation 
is higher than deforestation in magnitude, a perma-
nent change has occurred. According to the results of 
the visual analysis, permanent afforestation is concen-
trated mainly in agricultural areas in the Great Hun-
garian and Little Hungarian Plains. These permanent 
changes reduce the size of agricultural land, and ex-
plains the rate of agricultural intensification. Overall, 
the land use change maps created provide detailed in-
formation about land use transformations in Hungary 
that have occurred over the last 30 years, which were 
dominated by agricultural intensification, afforesta-
tion, and gradual and slow urbanization.

Discussion

This study aimed to test a possible classification meth-
od, to create large-scale LULC maps on 4 dates. Fur-
thermore, we tested these predicted maps in a large-
scale, pixel-based change analysis. In the presented 
method, we used the HGBCT classifier to create maps, 
based on Landsat imagery with landscape metrics and 
texture data. By considering the predicted map, land 
use change analysis was performed, which matched 

the CLC change layers. The land use change mapping 
method presented meets the preliminary expecta-
tions.

Many studies have focused on land use/land cov-
er classification in different scenarios. McCarty et al. 
compared three different algorithms (random forest, 
SVM, and light GBM) for large-scale land use map-
ping (McCarty et al., 2020). In their classification sce-
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nario, seven classes were targeted, and the light GBM 
had the highest overall accuracy (65.3%) and random 
forest had the lowest overall efficiency (59.4%). Ma-
linowski et al. created an automated CLC mapping 
method using the random forest classifier and a mod-
ified nomenclature, which had only 13 classes (Ma-
linowski et al., 2020). Using this method, they could 
successfully create land use maps for the whole area of 
Europe, with an overall accuracy of 86.1% at the conti-
nental level. A very similar study to our research was-
made by Marco Calder 'on-Loor et al. (Calderón-Loor 
et al., 2021). They made a land cover/use mapping and 
change analysis for Australia from 1985 to 2015, with 
5-year steps. They used Google Earth Engine to pro-
cess a high amount of Landsat images (>200 000) to 
create composite images. They classified the preproc-
essed images into six land cover classes with a random 
forest model. With this high number of images and 
a low number of classes they reach a very high accu-
racy (<93%) and made a satisfactory change analysis. 
A global land cover map made by Karra et al. (Karra 
et al., 2021). They created land use maps with the use 
of Sentinel-2 images and hand-labeled reference data-
sets, which contains 10 classes. For classification pur-
poses, they utilized a UNet neural network for image 
segmentation and to classify the segments. The results 
showed, the usefulness of the UNet network at land 
cover classification, where every class reached >85% 
accuracy. These surveys are showing very good results 
at large-scale classification, but the applied nomencla-
tures were mainly limited to land cover classes. 

The results of our presented method show a sig-
nificant progress. In our classification scenarios, we 
used more than 20 classes with low separability val-
ues and big monotemporal datasets. Despite the use of 
this difficult scenario, the HGBCT classifier achieved 
satisfactory results (83.35%–92.63%). The other mod-
el-performance metrics, such as log loss and kappa, 
show corresponding results. Furthermore, the UAs 

and PAs of the models were high, only the class 211–
Non-irrigated arable land, which has the largest ex-
tent, obtains a low PA. This low PA can occur for rea-
sons such as training point randomness, class mixture 
caused by the CLC’s MMU, and combination of the 
pixel-based mapping unit and an accurate model. As 
most of these reasons cannot be eliminated, the prob-
lem could occur in every setting of the method. Ac-
cording to these results, our predicted map was suit-
able for change mapping. Land use change mapping 
is difficult to evaluate because the relevant databas-
es would have been created using different method-
ologies (nomenclatures, MMUs, and reference data). 
In this study, land use change maps were created at 
the pixel level (900 m2) using the CLC nomenclature. 
The CLC change layers and the predicted change maps 
were comparable. However, the two datasets have dif-
ferent time-range, which slightly distorts the compar-
ison. Besides, the MMUs of the two datasets were dif-
ferent (CLC change layers had 5-ha changes). Thus, 
the predicted maps had more details and larger val-
ues in certain categories than the CLC change layers, 
and their range of statistics was much larger. This dif-
ference could be attributed to the magnitudes of the 
changes, which were much bigger in the predicted 
maps (1.802%/year – 6.414%/year) than in the CLC 
change layers (0.259%/year – 0.516%/year). The MMU 
had a large impact on the analysis because the major-
ity of the changes occurred in small and separate ar-
eas; thus, they are not shown in CLC change layers 
and may not be permanent, which is true especially 
in agriculture in which are many small parcels. These 
temporary, likely parcel-level, agricultural changes 
are responsible for approximately half of the changes. 
Overall, the predicted maps contain both permanent 
and temporary changes and thus provide a detailed 
picture of the land use changes in the country. Thus, 
the maps can be used in detailed surveys.

Conclusion

The large-scale land use mapping contains several 
difficulties: available data sources, size of the data, 
nomenclature, etc. Our study demonstrated a pos-
sible solution, where we created LULC maps with 
the combined use of spectral bands, and variance 
texture data landscape metrics. According to the 
study findings, with the aforementioned informa-
tion, when used as input layers in classification, we 
predicted maps with high accuracy (83.35%–92.63%). 
Land use change maps were created by comparing 

the land use maps at pixel-level, that were created. 
The created maps contain details of permanent and 
temporary changes, and are, therefore, adequate for 
the various types of analyses. The results revealed 
that more studies using carefully chosen training 
points are required to examine the impact of train-
ing point selection, and the importance of the MMU 
of the reference data. Moreover, using different 
change categorizations, detailed change flows would 
become observable. 
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