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Abstract

A variogram-based two-point geostatistical approach was applied to generate a geological model of a 
petroleum reservoir. The geology consists of a sandstone formation with uniformly inclined rock strata 
of equal dip angle structurally trapped by surrounding faults. Data exploration of electrical well logs us-
ing univariate/bivariate statistical tests and data transformation tools demonstrated the data to be sta-
tistically suitable for ordinary kriging and sequential Gaussian simulation. Three directions were defined 
as part of the variogram and the data were interpolated resulting in a 3D subsurface representation. 
Validation included performing a leave-one-out cross-validation for each well and statistical compari-
son of multiple realizations generated from a computed stochastic model. The results display a reliable 
geological model which indicate a direct causation of the continuity trends from the bedding attitude 
of the regional fault trap.

Keywords: Reservoir Characterization; Ordinary Kriging; Conditional Simulation; Geostatistics; GIS; Pe-
troleum Geology; Los Angeles Basin

Using Geostatistics to Generate a Geological 
Model of a Sandstone Petroleum Reservoir  
in Southern California

Introduction

Reservoir characterization includes estimating the dis-
tribution of subsurface properties of a geologic system, 
which is essential for improving resource management, 
production development and field operations (Gorell, 
1995). Reliable geologic outputs obtained from geosta-
tistical models are used in a variety of important prac-
tices such as calculating production rates, remediating 
contaminated aquifers, estimating the recoverable re-
serves (i.e., oil, gas or water), drilling new boreholes and 
determining hydrocarbon migration (Deutsch, 2006). 
An important question for reservoir characterization is 
to determine the extent of geological continuity. This 
report demonstrates how to generate a geological mod-
el using two-point geostastistics and thereby revealing 
the geological continuity. 

Interpolation of subsurface data involves predict-
ing values of specific variables at unsampled locations 
based on the measurements obtained from known lo-
cations using statistical principles, thereby creating a 
continuous surface of the geologic domain (Journel, 
2000) (Dubrule & Damsleth, 2001). The inclusion of ge-
ological features depends mainly on the depositional 
environment and defines the overall geological archi-
tecture of a given reservoir (Ebong et al., 2021). Differ-
ent geological settings may require different geostatis-
tical approaches in order to construct an appropriate 
model that honors the character of the reservoir with 
the greatest possible accuracy (Ebong et al., 2021; Cau-
mon, 2010). The assumption of stationarity is impor-
tant in geostatistics, and it is defined in practice as local 
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data averages within a spatial domain that are approxi-
mately constant (Elfadil et al., 2018). Assuming station-
arity for a particular area requires that the model de-
veloped from the sampled data be applicable within the 
specified area of stationarity (Kelkar & Perez, 2002). In 
the context of this investigation, the area of stationar-
ity defined by the continuity boundaries for the sub-
surface field is the reservoir. In reservoir analyses this 
assumption is necessarily subjective because of the in-
herent uncertainties in the subsurface and the scarcity 
of data which prevents researchers from being certain 
about the geology of a region in which there is limited 
subsurface data (Kelkar & Perez, 2002). 

In cases where geological structures are continuous 
enough throughout the reservoir, even if minor in-
consistencies exist in some locations within the field, 
it is assumed to be appropriate that the reservoir can 
be modeled as a whole using variogram-based mode-
ling (Nobre & Sykes, 1992). Kriging is a widely used, 
conventional estimation technique based on a line-
ar estimation procedure expected to provide accurate 
predictions of values within a volume, over an area, or 
at an individual point within a specified field (Kaur & 
Rishi, 2018). In earth science, kriging is a favored in-
terpolation approach compared to other methods be-
cause of its ability to include the anisotropy that rock 
layers of a sedimentary material exhibit in geological 
formations. Thus, models that are obtained via the use 
of kriging have more resemblance to the true field ge-
ology (PetroWiki, 2020). This is in part because the 
linear-weighted averaging methods used in kriging 
techniques depend on direction as well as orientation, 
instead of only depending on distance as other inter-
polation methods do. Kriging is explained by the fol-
lowing expression:

Z* x
!
p( )= λiZ

i=1

n

∑ x
!
i( )

where Z*(x→i) = value at a neighboring location , (x→i), 
λi = weight of neighboring value and Z*(x→p) = esti-
mated value at the unsampled location (Uyan & Dur-
sun, 2021). The estimation procedure calculates the 
weights λi (assigned to neighboring locations, which 
depend on the spatial relationship between unsam-
pled points and neighboring values as well as the spa-
tial relationship between neighboring points (Uyan & 
Dursun, 2021). The relationships are obtained via the 
use of a variogram model.

Ordinary kriging is by far the most used kriging 
approach that allows for the local mean to vary and 
be re-estimated based on nearby (local) values, there-
by easing the assumption of first-order stationarity 
(Satish Kumar & Rathnam, 2020). Ordinary kriging 

is better suited for this type of analysis because a true 
stationary global mean value for data in a reservoir 
is typically unknown. It cannot be assumed that the 
sample mean is the same as the global mean because 
in any real reservoir the local mean within a neigh-
borhood in the field can easily vary over the spatial 
domain (Kelkar & Perez, 2002).

Another approach to characterize reservoirs is the 
use of conditional simulation techniques. One of the 
distinguishing factors of simulation methods is that 
the variance observed in the data is preserved by re-
laxing some of the constraints of kriging, as opposed 
to only preserving the mean value as is done in in-
terpolation (Kim et al., 2020). Conditional simulation 
is a type of variation of conventional kriging, but it 
is a stochastic modeling approach that allows for the 
calculation of multiple equally probable solutions (i.e., 
realizations) of a regionalized variable by simulating 
the various attributes at unsampled locations instead 
of estimating them (PetroWiki, 2016). A ‘condition-
al’ simulation is conditioned to prior data, or in oth-
er words, the raw data measurements and their spatial 
relationships such as a variogram are honored (Kelkar 
& Perez, 2002). This approach helps represent the 
true local variability by providing several alternate 
equiprobable realizations, thereby helping to charac-
terize local uncertainty (Caers & Zhang, 2004). This is 
one of the most useful properties of a conditional sim-
ulation because all models are subject to uncertain-
ty, in particular, geological models because they are 
based on partial sampling. This is especially true for a 
reservoir model due to the several different sources of 
uncertainty (Kelkar & Perez, 2002).

Provided that the true value of an attribute is a sin-
gle number, but that exact value is always unknown, 
the practice in statistical modeling is to transform 
the single number into a random variable, a variate, 
which is a function that specifies its probability of be-
ing the true value for every likely outcome (Kelkar & 
Perez, 2002) (Kim et al., 2020) (Caers & Zhang, 2004). 
During each individual run the corresponding reali-
zation starts with a unique random ‘navigational path’ 
through the discretized volume providing the order 
of cells (or points) to be simulated (Kim et al., 2020). 
Because the ‘path’ differs from each realization-to-re-
alization, the results provide differences throughout 
the unsampled cells which yield the local changes in 
the distribution of rock properties throughout the res-
ervoir that are of interest for accurate geological rep-
resentations. Running several realizations produc-
es several values per variate, allowing for a graphical 
representation of the results and an approximation of 
the variates (Olea et al., 2012). It is assumed that the 
geologic facies vary smoothly enough across the res-
ervoir (typical depositional setting of shallow marine 
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reservoirs), as opposed to sharp changes in the shape 
of the sedimentary body. 

Sequential simulation methods are some of the 
most widely used in practice where unsampled loca-
tions are sequentially and randomly simulated until 
all points are included (Elfadil et al., 2018). The order 
and the way that locations are simulated determine 
the nature of the realizations. Sequential Gaussian 
Simulation (SGS) is one of the most popular tech-
niques, it assumes the data follow a Gaussian distri-
bution (Kim et al., 2020). Because SGS is best suited 
for simulating continuous petrophysical variables it is 
deemed most appropriate for this study. 

Both ordinary kriging and SGS are well proven ap-
proaches to characterizing a reservoir. A useful ap-
proach is to use both and compare and contrast the 
results. When including the simulation approach, the 
natural variability of the local geology counters the 
blunt smoothing effects of kriging (Kim et al., 2020). 
The novelty of this study is the combination of con-
ventional kriging and conditional simulation of bore-
hole data points for sandstone model evaluation. The 
goal of this investigation is to create a model to be uti-
lized for reservoir engineering and help the develop-
ment of the oilfield by identifying the best target areas 
to drill and perform oil recovery practices.

Study Area and Geology

Study Area
This project evaluates the Michelin sandstone reser-
voir within the Abacherli lease of the Mahala oil field 
in the eastern edge of the Los Angeles Basin of South-
ern California, situated within the Chino Hills along 
the Chino fault (Figure 1). The reservoir surface area 
consists of hills dissected by deep canyons with ele-
vation changes from approximately 500 feet (152 me-

ters) to 1,200 feet (366 meters) above sea level. The 
Chino Hills were formed by uplift of the two region-
al geologic faults, Whittier and Chino. The sedimen-
tary basin of Los Angeles consists primarily of coastal 
lowlands and Upper cretaceous-cenozoic rocks in the 
surrounding hills (Madden & Yeats, 2008) (Figure 2).

Geology
Compressional forces from the Chino fault resulted in 
deformation creating the Mahala anticline structure 
(Madden & Yeats, 2008) (Figure 3). The structure is an 
asymmetric northwest-trending breached anticline ex-
tending over 3 miles (4.83 kilometers) in length (Dors-

ey, 1993). The anticline is thrust-faulted by the chi-
no fault, which trends to the northwest and has a dip 
range between 50-70° to the southwest (Olson, 1977). 
The Chino fault thrust sliced and segmented the north-
eastern-most limb of the Mahala anticline fold divid-
ing the area into a hanging wall above the fault and a 
footwall below the fault (Madden & Yeats, 2008) (Fig-
ure 4). This local mechanism is responsible for forma-

tion of the updip fault trap for the oil accumulation of 
the Michelin reservoir. The reservoir itself is a tilted ho-
mocline with steeply but uniformly dipping beds to the 
northeast with an approximate strike of 315°. The res-
ervoir dip angle ranges between 40-70° with an average 
of 60°, and the dip angle is largest closer to the fault and 
decreases with distance from the fault. Two northeast-
southwest trending sealing faults seal the reservoir at 
its northern and southern edges (Figure 5).

The depositional environment is marine to moder-
ately deep marine with sediment being deposited via 
the transport mechanisms of the sea and rivers, and 
with major subsidence and deposition occurring be-
tween the Upper Miocene until the Lower Pleistocene 
epochs (Yerkes et al., 1971). The strata range from Late 

Figure 2. Geological overview of the Los Angeles Basin 
(Madden & Yeats, 2008)

Figure 1. Location map of the study area region
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Cretaceous to Holocene, with the oldest Cretaceous 
section underlain by a basement rock of Mesozoic 
age consisting of granodiorite and associated plutonic 
rocks of the Southern California batholith from a depth 
of 5,000 feet (1,524 meters) to 7,000 feet (2,134 meters) 
(Olson, 1977). Following the law of superposition, it 
is expected that the layering order of the sedimentary 
rocks will follow the sequence on the stratigraphic col-
umn. However, the movement of the thrust fault has re-
versed the normal order by pushing up rocks of a lower 
layer over rocks of a higher layer, so older strata south-
west of the Chino fault, such as the Yorba shale mem-
ber thrust over younger Sycamore Canyon sand mem-
ber to the northeast. At present, the overthrust hanging 
wall block above the fault contains the lower permea-
bility shaly member, and the footwall block, including 
the Michelin reservoir, contains the higher permeabili-
ty oil-rich sand (Olson, 1977). The “Michelin Zone” res-
ervoir is predominantly a sandstone facies with some 
interbedded thin layers of silty and shaly sands under-
lain by poorly consolidated basal conglomerates (Dors-
ey, 1993). Observations of the lithology include tan to 
brown sand with a fine to coarse grain size, white to 
light gray and dark gray ultrafine grain size shale and 
siltstone, and pebble to cobble size, hard, poorly con-
solidated conglomerates in a calcareous matrix (Dorsey, 
1993). The production sands are estimated to have an 
average permeability of around 500md and a porosity 
of 27% (Dorsey, 1993). The available isopach map (Fig-
ure 5) helps illustrate the stratigraphic thickness of the 
formation and reservoir boundaries.

Figure 3. Geological map of the Chino Hills (Madden & 
Yeats, 2008)

Figure 4. Cross-section of Chino fault study area for line E-E’ of Figure 3 (Madden & Yeats, 2008)
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Data and Methods

Data
The data consisted of electrical logs for thirteen wells 
given as resistivity values (“R”) measured in ohms (Ω) 
and spontaneous potential values (“SP”) measured in 
millivolts (mv). The electrical logs used in this study 
were performed by Schlumberger Limited and the 
wireline services produced a continuous dataset for 

each of the boreholes with intervals of 10 feet (3 me-
ters).

A 3D cross-section of the lithological boundaries 
inferred from the log data. (Figure 6).

An ultra-high-resolution point data set was gen-
erated based on the available isopach map. Due to 
the very large size of the point data set (>1.5 million 

Figure 5. Isopach map of the Michelin Zone reservoir with drilled wells (Dorsey, 1993)

Figure 6. 3D Well Log Stratigraphic Digitization Model. Orange box depicts study area reservoir illustrating the 
boundaries for all interpolated and simulated models (seen in Figures 8-13)
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points) running all simulations was computational-
ly demanding, taking a total time of over one month 
for completing 101 realizations using a Dell XPS-8300 
desktop with a Windows 7 professional 64-bits oper-
ating system.

Methods
Since ordinary kriging and conditional simulation 
methods are modeled by a Gaussian process, univar-
iate and bivariate statistical tests were performed to 
determine if the data required transformation. The 
data values were inputted into the geostatistics mode-
ling software (Figure 7 (a-b)), and a Probability Densi-
ty Function (PDF), Cumulative Distribution Function 
(CDF), QQ-plot and a scatter plot were constructed. 
Colorbars indicate range of SP and R values.

The PDF and CDF outputs of the raw SP dataset 
followed an acceptable normal distribution. There-
fore, further transformation for this dataset was not 
deemed necessary. The PDF and CDF of the raw R 

dataset displayed a significant positive skew to the 
right and thus were not normally distributed. It was 
therefore necessary to transform this dataset to nor-
mality. The R dataset was transformed to a normal 
distribution by using a histogram transformation tool.

The Q-Q plot of both the SP and original R prob-
abilities plotting their quantiles against each other 
compares the shapes of the two probability distribu-
tions and allows to better determine if the data is close 
to a normal distribution. For the compared proba-
bility distributions to be normal, the plotted points 
should lie within a straight line. The closer all points 
are to a straight line, the closer the samples are to a 
normal distribution. The original graph illustrates 
that there is a significant offset, indicating a clear de-
viation from normality. The Q-Q plot of the SP data-
set with the normally transformed R dataset illus-
trates a linear relationship between the two variables 
where the points plot across a straighter line indicat-
ing a more normal distribution.

Figure 7a. R Well Data Logs with well ID numbers within study area boundary

Figure 7b. SP Well Data Logs with well ID numbers within study area boundary
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To establish the variogram parameters, the data 
was first input into the modeling software and the lag 
components that define the distance and the direc-
tional components that define the direction/orienta-
tion were selected. The three lag distance components 
are: 1) number of lags, 2) lag separation and 3) lag tol-
erance and the four lag direction components are: 1) 
azimuth, 2) dip, 3) tolerance and 4) bandwidth. 

A useful technique to help estimate the parame-
ters is to restrict the maximum distance at which the 
variogram is computed while retaining enough data 
points for a reliable estimate for that given distance. 
A common approach to select that restricted distance 
is to use half of the maximum possible distance with-
in the region of stationarity and use it as the lag dis-
tance (Kelkar & Perez, 2002). Because a variogram is 
symmetric, this approach still ensures that all pairs 
on either side of a given location are included in the 
model. In addition, another common approach is to 
use approximately half the distance of the lag separa-
tion as the lag tolerance (Babish, 2000). These lag as-
sumptions are not necessarily applicable to every case, 
since the conditions (geologic structure, well geome-
try, depositional settings) of different reservoirs may 
require significantly different lag parameters. Howev-
er, since the wells in this field are oriented in nearly a 
straight axis, the well spacing is consistently distrib-
uted at closely uniform intervals, and the total area of 
the field is of modest size, this entire reservoir system 
is treated as a whole, and these factors and assump-
tions are applied in the variogram analysis.

Lag distance is equal to the number of lags times the 
lag separation. The maximum distance between any two 
well data points is 4,300 feet (1,311 meters), therefore the 
maximum lag distance the model was initially targeted 
to have was around 2,150 (655). After several attempts 
with the given directions, a lag number of 39 and a lag 
separation of 55 provided promising preliminary vario-
gram plots. A lag tolerance half the value of the lag sepa-
ration was targeted, so the value selected was 27 (55 ÷ 2= 
27.5)) rounded down to the nearest whole.

Four components define the directionality of the 
variogram: azimuth, dip, tolerance, and bandwidth. 
The azimuth and dip, analogous to geologic strike 
and dip, are two important components reflecting 
the major axes in a 3D environment, and the toler-
ance and bandwidth help further refine the directions 
of interest to accommodate the intended directional-
ity of the field. By adjusting the variogram azimuth, 
dip, tolerance, and bandwidth, it is possible to capture 
the structural geology of the field (strike, dip, rake, 
plunge) and hence end up with a true volumetric esti-
mation that resembles the geological structure. A gen-
eral direction was first established by selecting the az-
imuth and dip, and then the tolerance and bandwidth 

were adjusted until a variogram structure was iden-
tified. Three variogram directions were established: 
a vertical direction, an omni-directional and a ma-
jor direction in the horizontal axis which followed the 
geological strike of the reservoir.

The first direction established was the vertical di-
rection with an azimuth of zero, a dip of 90°, a toler-
ance of 5° and a bandwidth of 200. The second direc-
tion established was omnidirectional with an azimuth 
of 0°, a dip of 0°, a tolerance of 91°, and a bandwidth 
of 200. The third direction established was the hori-
zontal direction aligned along the strike of the reser-
voir with an azimuth of 120°, a dip of 10°, a tolerance 
of 40°, and a bandwidth of 500. The interpreted vario-
gram structure for each dataset in each direction was 
fitted with the best fit function. After several attempts 
adjusting the variogram design for both datasets in 
terms of the specific modeling components and vario-
gram parameters, a final best-fit variogram model was 
established for each dataset.

As part of the interpolation, the variance was also 
mapped, identifying the areas with higher or weak-
er variance. Cross-validation of the results involved 
leaving one data location out and performing the es-
timation to predict the value at that excluded location, 
repeating the process by removing one different well 
location at a time, then re-running the estimation un-
til all the well values have been interpolated. Once the 
predicted values were obtained for the data at all the 
well locations, they were compared to the known val-
ues to help determine the accuracy of the model. 

The uncertainty throughout the field was character-
ized by examining the differences among the multiple 
equiprobable realizations, which display the local vari-
ations. In this matter, if uncertainty at a particular loca-
tion is relatively small, then a number of images should 
display similar simulated values at that location. Con-
versely, if uncertainty at a particular location is relative-
ly large, then a majority of images should display the 
differences in simulated values at that location.

Since the primary objective of performing a sto-
chastic simulation is to create a model for the prob-
ability distribution of the unknown variables and be-
cause the variables are conditioned to the data, which 
is assumed to be a true representation of the subsur-
face geology, then their values are reasonably expect-
ed to fall within the limits of the simulated probabili-
ty distribution. Summary statistics performed on the 
simulation output provide a measure of the uncertain-
ty of the model, and specific statistical calculations on 
the suite of realizations provided estimated probabil-
ities. Calculating the median of the resulting multi-
variate distribution from all the realizations yielded a 
map with the highest probability of representing the 
true model. This probability model was compared to 
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the predicted (kriged) model, and the similarity pro-
vided a degree of confidence. In addition to the me-
dian probability (i.e., P50), the P10 and P90 quantiles 

provided uncertainty ranges in the simulated median 
value, and thus more confidence that the true expect-
ed mean value falls within the simulated range.

Results

The correlation coefficient between R and SP was -0.665. 
This strong negative correlation follows the trend ex-
pected in a petroleum field since large positive R spikes 
and large negative SP deflections are clear indicators of 
permeable hydrocarbon-containing formations.

A total of 53 realizations of SP distribution across 
the field using Sequential Gaussian Simulation (SGS) 
were generated. Six randomly selected SP SGS realiza-
tions are illustrated (Figure 8).

A total of 48 realizations for R distribution across 
the field using SGS were generated. Six randomly se-
lected R SGS realizations are illustrated (Figure 9).

The calculated median (P50), as well as the P10 and 
P90 maps for R were generated (Figure 10). Higher R 
values shown in red in Figure 10 are scattered, but a 
cluster is apparent in center area of reservoir.

The calculated median (P50) as well as the P10 and 
P90 maps for SP were generated (Figure 11). Higher 

Figure 8a. SP Realization Example #1

Figure 8b. SP Realization Example #2
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Figure 8c. SP Realization Example #3

Figure 8e. SP Realization Example #5

Figure 8d. SP Realization Example #4
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Figure 8f. SP Realization Example #6

Figure 9b. R Realization Example #2

Figure 9a. R Realization Example #1
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Figure 9c. R Realization Example #3 

Figure 9e. R Realization Example #5

Figure 9d. R Realization Example #4
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Figure 9f. R Realization Example #6

Figure 10b. R P10 model 

Figure 10a. R P50 model
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red SP values are evident in the southeastern area of 
the reservoir, while scattered, lower blue SP values are 
apparent in the center area as well as near the top of 
the southeastern area, especially in the P50 and P90 
models.

The models were interpolated, and their derived 
variance maps were generated for both R and SP data-
sets (Figures 12 and Figure 13).

In Figure 12, higher R values in red are evident in 
the middle of the reservoir, and decrease outward 

from the middle to the edges of the reservoir, and 
the variance is less in middle and gradually increases 
(with darker shades) towards the corners.

Lower SP values indicated in blue are centered in 
the middle, top section of the reservoir, and gradual-
ly decrease toward opposite edges. Higher SP values 
in red are concentrated in the southeastern section of 
the reservoir. The variance is low in the southeastern 
section and towards the center of the reservoir, while 
it increases in the top corners (Figure 13).

Figure 10c. R P90 model

Figure 11a. SP P50 model
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Figure 11b. SP P10 model 

Figure 12a. R kriging map

Figure 11c. SP P90 model
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Figure 12b. R variance map

Figure 13b. SP variance map

Figure 13a. SP kriging map 
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Discussion

The vertical variograms for both datasets exhibit pe-
riodic behavior, which represents cyclical sedimenta-
ry processes. This is known as the “hole effect” and 
is typically experienced when modeling variograms 
in the vertical direction. In depositional environ-
ments, sediment is deposited in layers during geologi-
cal events, thus this repetition of cycles will be reflect-
ed in the vertical continuity of the layers in the field. 
In these variograms, the transition from one stratum 
to another can be clearly defined. Interpretation from 
both vertical variograms indicates that the formation 
is continuous up to around 350 feet (107 meters) and 
then becomes discontinuous but regains continuity at 
greater distances. This trend is expected to continue 
throughout different depths across the reservoir. The 
fitted vertical variogram functions only include those 
values up to 350 feet because it is useful to only cap-
ture the extent of the continuous data. In addition, the 
average thickness of the producing formation is only 
378 feet (115 meters), so most of the vertical extent is 
included by modeling to 350 feet. The fitted functions 
of the other two directional variograms were plotted 
to include as many of the data points as possible. A 
few local outliers were excluded in order to obtain a 
reasonable structural variogram model. Overall, the 
trend of the field appears to be well captured in the 
variogram models.

Since all the realizations honor the same con-
straints because they are coming from the same dis-
tribution, it is not possible that one realization is more 
likely to occur than any other. Therefore, the appar-
ent differences between realized images are represent-
ative of the local uncertainty and visualizing their 
variability provides a reasonable assessment of un-
certainty. Provided the distribution is representative 
of the real field then the true reservoir values are ex-
pected to fall within the bounds of the distribution 
while the calculated statistical summaries of the sim-
ulation (P10, P50, P90) illustrate the probabilities of 
occurrence. 

The cross-validation included the observed data 
plotted with the estimated data versus subsea depth. 
All the plots include low, medium, and high-val-
ue thresholds as well as horizontal error bars of the 
standard deviation of the observed data.

Comparing the kriged R model with the simulat-
ed R P50 model, it appears that the overall trend gen-
erally remains consistent between both models except 
for a few small patches in the upper half of the field. 
Comparing the kriged SP model with the simulated 
SP P50 model, it appears that most of the continui-
ty is also well preserved, especially in the lower half 

of the field. However, small to moderate dissimilari-
ty appears within the upper half of the field. The dis-
similarities that are most apparent occur mainly near 
opposite edges, which is probably due to the lack of 
data from boreholes drilled near the edges. Greater 
uncertainty is expected near the corners because the 
edges are further away from the observed values. The 
P10 and P90 maps appear to show a modest margin of 
probability in the distribution in which the P50 me-
dian falls between the lower and upper quantiles. The 
noticeable differences apparent in both datasets in the 
upper half of the models are probably related to more 
significant geological variability in the upper half of 
the reservoir.

Standard deviation error bars help provide a “toler-
ance range” in the cross-validation to better gauge in-
terpolation accuracy. Well#1 had the largest error in 
the R dataset, followed by the southernmost well#4. 
Although these wells plot in a consistent manner close 
to the observed values, most of the calculated values 
fall outside the bounds of the standard deviation. The 
estimated values for the rest of the wells in this data-
set appear to plot reasonably close to the observed val-
ues. Close examination of the R results revealed that 
the estimations for all the wells between well#1 and 
well #4 (i.e. in the lower half of the field) appear to plot 
slightly better than all of the wells north of well #1 (i.e. 
in the upper half of the field).

Well#7 had the largest error in the SP dataset, plot-
ting outside the bounds of the standard deviation. 
Most of the other wells within this dataset also plot 
reasonably close to the observed values. Neverthe-
less, some significant differences were noted, includ-
ing well #4 (located at the southern edge) and well #6 
(located at the northern edge) which both show sig-
nificant deviation. The “dataset outlier” for SP is well 
#7 and for R values is well #1. The same field observa-
tion is noted in both the R and SP results, where all 
the wells in the lower half (south of their respective 

“dataset outlier”) provide slightly closer approxima-
tions relative to all the wells in the upper half (north 
of the dataset outlier). 

The relatively larger margin of error of the two 
wells at the edges can be attributed to their more iso-
lated locations compared to the other wells. The clus-
tered borehole locations have more conditioning data 
and so are expected to provide slightly more accurate 
estimates. Given a general consistency between the 
kriged and simulated models, in addition to the same 
general trend expressed from the cross-validation of 
both datasets. It can be assumed that the southern 
half of the field, from well #4 up to somewhere be-
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tween well #7 and well#1, is very continuous and the 
upper half, from well #1 to well#6, is slightly less con-
tinuous. The results of this study indicate that the res-
ervoir is intact with a well-defined continuity trend 
mimicking the geologic attitude of the field. As can be 
seen from similarities between the northwest-south-
east direction and the omni-direction variograms, the 
continuity in the study area is preferential in the plane 
parallel to the geological strike. Because all the wells 
are preferentially directed along this plane, there is in-
herently more certainty in the data obtained in this 
direction (northwest-southeast) compared to the per-
pendicular direction (southwest-northeast). Further-
more, because of the continuous thrust faulting that 
extends the reservoir along the strike and thins the 
geologic units along the perpendicular plane, it is ex-
pected that the trend along the plane perpendicular to 

the strike will be less continuous. Similarly, because a 
coherent continuity trend is captured in the vertical 
direction, the uncertainty in this direction is minimal. 

Other similar studies have been conducted on oil-
field reservoirs, yet with notable differences compared 
with the study described herein. For example, Grin-
garten and Deutsch, 1999 describe proper use of vari-
ogram modeling but do not illustrate conditional sim-
ulation evaluations. Sabouhi et al. (2019) conducted 
variogram-based modeling of a hydrocarbon field us-
ing sequential indicator simulation rather than se-
quential gaussian simulation. Masaud and Meddaugh, 
2019 conducted reservoir characterization via geosta-
tistical modeling but due to facies heterogeneity, use 
of a pillar gridding technique to establish a structural 
framework, and use of a conceptual facies model were 
warranted. 

Conclusion

A geologic model was created using a two-point geosta-
tistics approach that characterizes the distribution of 
electrochemical properties. The study area represents 
a conventional sandstone oil reservoir. Evaluation of 
the data obtained from electrical logs warranted or-
dinary kriging and sequential Gaussian simulation as 
appropriate methods for the analyses. A best fit vari-
ogram function incorporating geological and statisti-
cal assumptions was defined and used for the analyses. 
Results included 3D models and multiple equiproba-
ble realizations of the geological continuity of SP and 
R. With respect to associated uncertainties, the con-
fidence level in the models is preferential relative to 
the direction where it is strongest vertically, then par-

allel to the geologic strike, and then perpendicular to 
strike. Validation procedures included cross-valida-
tion and calculating the P10, P50, and P90 quantiles 
to assess local uncertainty and variability. By compar-
ison and evaluation, it can be concluded that the re-
sults provided a practical reservoir model. Although 
the structural continuity of the reservoir appears to 
retain general consistency throughout the field, there 
is an apparent continuity trend where the northern 
half of the reservoir becomes slightly less continuous 
relative to the southern half. It is assumed that this 
small to modest change reflected from the field conti-
nuity is due to geological phenomena attributed to the 
localized thrusting of the Chino fault.
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