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Abstract

The current study aimed to prove the existence of a significant relation between land surface tem-
perature (LST) and local climate zones (LCZs) and its possibility to be generalized to all cities around 
the world with different climatic zones and characteristics. The further step in this regard was to find 
the effective climatic and geographical variables affecting this potential relation. For that, 25 cities all 
around the world with various climatic conditions were selected based on the availability of appropriate 
satellite images and level zero data on the World Urban Database and Portal Tool (WUDAPT). After ac-
quiring both LST and LCZ maps the comparison between them was made with the Wilcoxon rank sum 
test indicating the existence of any meaningful pattern. Then, 8 climatic and geographical variables and 
all possible combinations thereof were assessed to determine the effective drivers on the LST-LCZ rela-
tionship. The results showed that the combination of the latitude, mean and maximum annual temper-
ature affected this connection more than any other considered variables.

Keywords: Land Surface Temperature (LST); Local Climate Zones (LCZs); Wilcoxon rank sum test; Hier-
archical cluster analysis

Introduction

Proceeding rapidly, urbanization has an intense im-
pact on the bio-physical surface conditions and en-
ergy and material fluxes in its purpose areas (Bechtel 
et al., 2015). Urbanization typically replaces the ex-
isting natural surface cover with impervious materi-
als and buildings, and increases the activities trans-
ferring waste disposal into its environment. Known 
as one of the main drivers of global environmental 
change, cities are also remarkably exposed to the 
consequences of this change such as rising sea lev-
els and increased air temperatures (Oke, 2004). Fur-
thermore, cities generate distinct climatic conditions, 
which can cause discomfort, heat stress, and expo-
sure to disease and pollution on humans. In particu-
lar, cities are warmer than their surroundings. This 

fact is referred to as the urban heat island (UHI); a 
phenomenon where urban regions experience higher 
temperature than their rural surroundings (Imhoff 
et al., 2010). Traditional ways of defining the UHI 
magnitude mostly involved the urban-rural clas-
sification. As there were ambiguities in implemen-
tation of such classification, researchers tried new 
approach to make heat island observations more 
comprehensive through introducing methods of in-
tra-urban climate classifications. Such sort of classi-
fications were defined to highlight urban impact on 
local climate (Houet & Pigeon, 2011): Urban Terrain 
Zones (Ellefsen, 1990), Urban Climate Zones (UCZs) 
(Oke, 2004), and Local Climate Zones (LCZs) (Stew-
art & Oke, 2009a, b, 2010). 
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Being more detailed and improved, LCZ is the 
main focus of many recent urban studies. The con-
cept of Local Climate Zone, which was introduced by 
Steward and Oke (2009), has been evolved to quanti-
fy the relation between urban configuration and UHI 
(Cai et al., 2016). LCZs are specifically defined as “re-
gions of uniform surface cover, structure, materi-
al, and human activity that span hundreds of meters 
to several kilometres in horizontal scale” (Bechtel et 
al., 2015). Furthermore, each LCZ is supposed to rep-
resent homogeneous air temperature (Cai et al., 2017). 
The first study evaluating the conceptual division of 
LCZs by temperature observations and simulations 
from the surface-atmosphere models, was conducted 
by Stewart et al. (2014). They proved that thermal con-
trasts exist among all LCZ classes over all their case 
study areas: Nagano (Japan), Vancouver (Canada), 
and Uppsala (Sweden). Following that research, many 
scientists have been trying to assess this connection in 
different regions. 

Lehnert et al. (2015) evaluated this concept in Olo-
mouc (Czech Republic) and tried to provide a classifi-
cation of existing stations within local climate zones. 
Alexander and Mills (2014) clarified the air temper-
ature difference between LCZs in Dublin (Ireland) 
by applying data from 6 fixed stations and addition-
al mobile measurements. Performing the same mo-
bile air temperature measurement approach, Leconte 
et al. (2014) showed that air temperature varied be-
tween LCZs in Nancy (France). Fenner et al. (2014) 
proved the connection between LCZs and air tem-
perature in Berlin (Germany) on the basis of up to 19 
fixed meteorological stations and additional around 
400 citizen weather stations. Lee and Oh (2016) stated 
that UCZ and air temperature maps displayed an al-
most identical pattern. Gal et al. (2016) and Skarbit et 
al. (2015) investigated the same case in Szeged (Hun-
gary) and found a great difference between the LCZs. 
Geletic et al. (2016) found a certain degree of agree-
ment between air temperature and LCZs in Prague 
and Brno (Czech Republic). Cai et al. (2017) in Yang-
tze River Delta (China) showed, as well, that the air 
temperature has considerable connection with LCZs. 
Beck et al. (2018) investigated the relations between air 
temperature and LCZs in Augsburg (Germany) under 
various synoptic conditions by using a comprehensive 
logger network. Their results confirmed conformity 
between air temperature and LCZs. 

Despite some remaining issues such as the exact 
pattern of the fluctuation of air temperature among 
the zones, all of the previous studies proved the exist-
ence of considerable relation between standard or spe-
cial-purpose near-surface air temperature and LCZs 
(Dobrovolny & Krahula, 2015). Given that, the men-
tioned air temperature maps can be used as one of 

the main tools to evaluate the performance of local 
climate zoning along with the confusion matrix de-
scribing the accuracy of such classification. It is worth 
mentioning that the confusion matrix final measures 
reflect the robustness of zones and their consistency 
but they do not indicate whether they are semantical-
ly correct (Bechtel et al., 2019). With that in mind, for 
many cities deprived of adequate observational tem-
perature records, an alternative variable which is in 
close relation with air temperature should be consid-
ered. 

Land surface temperature (LST) derived from var-
ious airborne or satellite remote sensing systems may 
be a suitable choice, as their spatial coverage is com-
plete (Geletic et al., 2016). Although these two sort of 
temperatures have different physical concepts and 
responses to atmospheric conditions (Mutiibwa et 
al., 2015), several studies (Xu et al., 2014; Florio et al., 
2004; Oyler et al., 2015) in other contexts have demon-
strated not only a strong connection between LST and 
near-surface air temperature, but also the possibility 
of benefiting from satellite-based LST as an substitu-
tion for air temperature in regions with a sparse me-
teorological record. 

There have been some remarkable studies focusing 
on quantifying the relations between LST and either 
LCZs (Cai et al., 2017; Geletic et al., 2016; Gemes et 
al., 2016; Bechtel et al., 2019) or UCZs (Houet & Pi-
geon, 2011). One of the most comprehensive ones in 
this context has recently been conducted by Bechtel et 
al. (2019). In that study, the connection between LST 
and LCZs derived from The World Urban Database 
and Portal Tool (WUDAPT) over 50 cities around 
the world was evaluated, and a considerable relation 
among them was concluded. 

The present study, as a complementary research, 
took further steps and besides proving the relations 
between LST and LCZs in the considered cities, ex-
plored if these relations exhibit an evident clustering 
and in how far this could be related to any potential 
effective climatic and geographical driving factors. 
This way our study aimed towards not only providing 
a more in-depth insight into the connection between 
LST and LCZs also its dependence on climatic and ge-
ographical drivers.

For that, after defining the connections for each 
city, a clustering of them was performed to spot those 
groups featuring similar LST-LCZ relations and to 
subsequently identify the effective driving factors of 
this grouping. In this study 8 climatic and geograph-
ical factors were focused: 1) Latitude, 2) Longitude, 3) 
Altitude, 4) Mean annual temperature, 5) Minimum 
annual temperature, 6) Maximum annual tempera-
ture, 7) Total annual precipitation and 8) Population 
density. 
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Data and methods

Study area
The study considered 25 cities well-scattered around the 
world were considered. There are two main criteria in 
selecting these cities: 1) the availability of the level zero 
product of the WUDAPT project and its quality, 2) the 
existence of Landsat8 images of the United States Geo-
logical Survey (USGS) for specific conditions e.g. con-
cerning cloudiness. With that in mind, 8 cities were 

considered in the Americas, 8 cities in Europe, 3 in Af-
rica and 6 in Asia and Oceania (see Figure 1). 11 of them 
were coastal cities and 14 were inland ones. As can be 
seen, this set of cities represents varying climatic con-
ditions ranging from tropical to boreal.

Local climate zone classification 
Local climate zoning for all case study cities was per-
formed following the standardized “WUDAPT-work-
flow” (Bechtel & Daneke, 2012; Bechtel et al., 2015). 
This approach consists of two main steps (Beck et al., 
2018): 1) generating so-called “training areas” (TA) 
representing typical surface structure morphology for 
each LCZ, 2) applying the properties of these TAs to 
assign each pixel of selected Landsat images to its cor-
responding LCZ by a random forest algorithm imple-
mented in the SAGA open source GIS software (Con-
rad et al., 2015). 

One of the main advantages of WUDAPT level 
zero products is the included threefold quality con-
trol: cross-validation, manual review and cross-com-
parison with other data (Bechtel et al., 2019). There-
fore, generating the LCZ maps based on WUDAPT 
level zero products can be a promising way to clas-

sify LCZs with acceptable accuracy. WUDAPT ap-
plies two main accuracy measures for its products: 
The overall accuracy (OA) and the weighted accura-
cy (WA). The OA indicates the percentage of correct-
ly classified pixels while the weighted accuracy (WA) 
takes the class similarity into account (Bechtel et al., 
2017). In the present study for each city, the training 
areas were downloaded from WUDAPT. Then, four 

Landsat8 images featuring less than 10% cloudcov-
er during daytime were used to perform the LCZ-es-
timation. In the end, the built-up and natural LCZ 
types were determined for 100 m ×100 m raster cells 
in each case study city (Appendix 1 shows LCZ maps 
for all cities). As can be seen from the appendix, there 
are 17 local climate zones from compact high-rise (1) 
to water (G) according to Stewart and Oke (2012).

Land surface temperature retrieving 
Land surface temperature (LST) is defined as the tem-
perature which is felt when the surface is touched with 
the hands (Rajeshwari & Mani, 2014). In this con-
text, the surface is every exposed plane to the satel-
lite sensors while recording the data on the ground. 
It could be snow and ice, the soil, the roof of a build-
ing, or the canopy of a forest. There are three main 
satellite data sources to retrieve the LST: Landsat Im-
ages, the  Moderate Resolution Imaging Spectroradi-
ometer (MODIS) and Aster. Some differences in the 
case of spatial and temporal resolutions (Brown et 
al., 2006) can be noticed among their records. In the 
frame of this study, according to its concept, Landsat 
8 images found to be well-suited. 

Figure 1. Geographical distribution of the considered case study cities (25 cities)
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Landsat 8 was successfully launched on the 11th of 
February 2013 into space carrying two main instru-
ments: the Operational Land Imager (OLI) and the 
Thermal Infrared Sensor (TIRS) (Salih et al., 2018). 
The OLI instrument collects the data in nine spec-
tral bands in the visible, near-infrared, and the short-
wave infrared spectral regions, while the TIRS instru-
ment attains the data in two thermal infrared spectral 
bands in the LWIR respectively centered at 10.9 μm 
and 12 μm (Wulder et al., 2016).

Many algorithms have been developed to retrieve 
the LST from Landsat 8 images, for example, the sin-
gle-channel algorithm (e.g. Jimenez et al., 2015), the 
split-window algorithm (e.g. Du et al., 2015) and the 
temperature and emissivity separation method (e.g. 
Wang et al., 2015). In this study the automated map-
ping algorithm introduced by Avdan & Jovanovska 
(2016) was applied, since other approaches are much 
more time consuming, and more prone to incorrect 
estimates (Avdan & Jovanovska, 2016). This method 
requires the fourth, fifth and tenth bands of a Landsat 
8 scene. To acquire the LST maps, 4 Landsat 8 scenes 
each belonging to a season were downloaded from the 
United States Geological Survey (USGS) website and 
applied to calculate the average LST measures for all 
case study cities (Appendix 1 includes all LST maps).

Wilcoxon rank sum test
In order to find any significant difference between the 
LST values among the local climate zones in each city, 
Wilcoxon rank sum tests (Wilcoxon, 1945) including 
the Holm adjustment of p-values in multiple testing 
(Holm, 1979) were performed. 

This test is a non-parametric statistical test used 
to compare two dependent samples to assess whether 
their population means’ ranks vary significantly. Un-
der the null hypothesis, similarity between the pairs is 
expected; therefore, in the present study p-values great-
er than the chosen α (significance level), indicated that 
LST means do not significantly differ among LCZs.

Hierarchical clustering 
Cluster analysis has been applied to determine any 
systematic pattern in the LST-LCZ relation over case 
study cities. Clustering is a process of grouping enti-

ties into a number of groups such that objects in the 
same groups are more identical than to those in oth-
er groups (Rokach & Maimon, 2005). In this study, we 
had two sets of clustering results through a hierar-
chical cluster analysis. First, all case study cities were 
clustered based on the characteristic of their LST-
LCZ relations (the mean LST of each LCZ) generat-
ing one clustering result. Then, once more, they were 
clustered based on the characteristic of their climatic 
and geographical factor combinations resulting in 255 
clusterings, according to the number of combinations. 

The here used agglomerative approach (Murtagh & 
Contreras, 2011), in every clustering, commenced with 
each city as one specific cluster. Then the two most 
similar clusters were merged into a new one. Final-
ly, the algorithm terminated when there was only one 
single cluster left. 

Some of the considered cities were lacking various 
LCZs, leading to the exclusion of those LCZs from 
the clustering process even for those cities featuring 
these LCZs. Therefore, to avoid the loss of informa-
tion a suitable approach had to be considered. In order 
to include all 17 LCZs in the clustering process, filling 
lacking zones with the mean LST of two main local 
climate super-types (built-up types and natural types) 
depending on which type the lacking LCZs belong to, 
was utilized. 

Rand Index
To determine the most effective geographical and cli-
matic factors, the clustering based on the character-
istic of the LST-LCZ relations was compared to those 
performed based on the characteristic of all 255 combi-
nations of selected potential driving factors. The Rand 
index - RI (Rand, 1971) along with the adjusted Rand 
index – ARI (Hubert & Arabie, 1985) were applied to 
quantify the agreement between every two clusterings. 
It should be mentioned that the ARI is corrected for by 
chance agreements among clusterings. For both indi-
ces, a maximum positive value of 1 indicates a perfect 
agreement among the two partitions to be compared. 
Thus, those clusterings of driving factor combinations 
exhibiting maximum RIs/ARIs with the LST-LCZ clus-
tering represent the most significant influencing fac-
tors on LST-LCZ relationships. 
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Results

LST-LCZ relation
Figure 2 presents boxplots of LST among local climate 
zones for all case study cities. Each boxplot shows the 
distribution of data based on a five-number summa-
ry: minimum (the lowest whisker), first quartile (the 
lowest boundary of the box), median (the line with-
in the box), third quartile (the highest boundary of 
the box), and maximum (the highest whisker). It can 
illustrate not only the outliers, but also if the data is 
symmetrical, how tightly they are grouped, and if and 
how they are skewed. As can be seen, most of the sam-
ples did not exhibit any skewness which could be in-
terpreted as a hint to normal distribution of the LSTs 
within each LCZ. However, some zones had skewed 
LST sets, such as water zone (G) in Berlin, Khartoum, 
Kuala Lumpur, Lisbon, Los Angeles, Montevideo and 
Tehran pointing to an asymmetry in the LST distri-
bution. The comparatively wide boxes in some cases, 
such as bare soil or sand zone (F) in Athens, large low-
rise zone (8) in Khartoum, water zone (G) in Phoenix 
and Sfax and open low-rise zone (6) in Washington 
DC, indicated a distinct variability of the LST in the 
corresponding zones. On the other hand, the compar-
atively narrow boxes indicated a higher level of agree-
ment among the LST measures. Overall, the built-up 
and natural types showed two independent sets of 
patterns in each city. 

According to Figure 2 the built-up types’ LST sets 
fluctuated in a hotter range than those in natural 
types. It is the same pattern, according to the con-
cept of LCZs, that should be expected in the term of 
air temperature as well, however, some natural types, 
such as rock and paved (E) and soil (F) zones, were vi-
olating this pattern in the case of LST. In the built-up 
types’ set the lightweight low-rise (7) and large low-
rise (8) showed remarkably hotter LST. The water zone 
(G), if existing in a city, was the coolest LST among 
both built-up and natural types.

The significance of LST differences among LCZ types 
The Wilcoxon rank sum test was applied to deter-
mine the statistical significance of differences in LSTs 
among LCZs. Resulting p-values of this test are shown 
in Figure 3 for each case study city. For cells in the tri-
angle plots filled with circle-cross no significant dif-
ferences among LSTs estimated for the representative 
LCZs could be deduced. 

Although some pairwise comparisons showed p-
values exceeding the significance level (here 0.05), in 
most cases (96% of all pairs) the alternative hypothe-
sis was fulfilled and a significant difference was con-
firmed. In most cases the p-values were lower than 

0.001 indicating a highly significant difference be-
tween LSTs related to different LCZs. The cities that 
showed the most insignificant differences were Ath-
ens and Sfax. In Athens, for example, the low plants 
zone (D) and bare soil or sand zone (F) exhibited no 
significant differences of LSTs to all other zones. On 
the other hand, Berlin, Khartoum, Moscow and Phoe-
nix featured significant differences for all pairs.

Determination of the most effective climatic and 
geographical driving factors 
After recognizing the existence of meaningful LST-
LCZ relations in all case study cities, a further step 
would be the detection of any potential climatic or ge-
ographical variables which affected these relations. 

For that, the clustering of all considered cities on 
the basis of their LST-LCZ relations, would lead us to 
determine any mutual climatic and geographical vari-
ables responsible for the similarity within each cluster. 
Here, hierarchical clustering was applied to recognize 
similar cities based on their LST-LCZ relations. Mean 
LSTs of each local climate zone were used as the crite-
ria for clustering; however, lacking zones in some cit-
ies would cause to reduce part of these criteria. Figure 
4 shows the results of the hierarchical clustering: the 
dendrogram, cluster locations on the map, the scree-
plot and the centroids of each cluster. The appropri-
ate number of the clusters according to the screeplot, 
dendrogram and the overall number of case study cit-
ies was considered as 5. To find the effective factors, 8 
climatic and geographical ones were investigated in 
this study: 1) Latitude, 2) Longitude, 3) Altitude, 4) 
Mean annual temperature, 5) Minimum temperature, 
6) Maximum temperature, 7) Total annual precipi-
tation and 8) Population density. Figure 5 shows the 
mean value of these factors in each cluster. 

There were 255 various combinations (From 1 to 8 
element sets) of the mentioned variables. To define 
which one carried the most effective factors on the 
LST-LCZ relation, all case study cities were clustered 
based on each combination. Each resulting clustering 
was compared to the original clustering of the LST-
LCZ relations by the use of the RI and the ARI. Fig-
ure 6 illustrates the respective indices of the ten most 
relevant factor combinations. As can be seen, the one 
consisting of latitude, mean and maximum tempera-
ture yielded the most similar clustering results to the 
LST-LCZ relation-based clustering. In this case, the RI 
and ARI were 0.73 and 0.303 respectively. The tenth 
highest combination was including the latitude, alti-
tude and mean annual temperature with RI and ARI 
of 0.72 and 0.261 respectively. 
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Figure 2. Box-plots of the LST-LCZ relations in each case study city; each contains the median (the white line inside 
the boxes), the 1st and 3rd quartile; whiskers indicate the highest/lowest LST value within corresponding zone; the y 

and x axes show, respectively, the land surface temperature and existing local climate zones; the box colors here are in 
accordance with the LCZ classifications in Bechtel et al. (2019) study
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Figure 2.
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Figure 2.
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Figure 3. Wilcoxon rank sum test results for determining significant differences between LSTs in different LCZs for each 
case study city; cities are ordered alphabetically; numbers inside the cells give the Wilcoxon rank sum test p-value; the 

cells with a circle-cross indicate insignificant differences (α= 0.05) between the LST of LCZs
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Figure 3.
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Figure 4. The results of the hierarchical clustering into 5 groups; 4-a) the dendrogram, 4-b) the map of the clustering, 
4-c) the screeplot and 4-d) the centroid of each cluster; each cluster has its specific color which in all three graphs can be 

recognized; the x and y axes in the third graph show, respectively, the LST measures and the local climate zones

Figure 5. The mean of all considered climatic and geographical factors for every cluster; the colors in 
this graph are compatible with those in clustering results (Figure 4)



Towards the Determination of Driving Factors  
of Varying LST-LCZ Relationships – a Case Study over 25 Cities

300 Geographica Pannonica • Volume 23, Issue 4, 289–307 (December 2019) – Special Issue

Conclusions

The results showed that the built-up and natural types 
behaved as two independent sets of patterns in each city. 
The built-up types’ LST sets fluctuated in a hotter range 
than those in natural types. It is worth noting that the 
hottest zone in each final cluster was large low-rise (8) 
followed closely by bare rock and paved (E), bare soil 
and sand (F) and lightweight low-rise (7). The water zone 
(G), if existing in a city, was the coolest LST among both 
built-up and natural types in all case study cities. 

Relation recognition in this study was performed 
by the Wilcoxon rank sum test, which in 96% of all 
LCZ pairs proved a meaningful and significant differ-
ence of LSTs. Furthermore, according to the RI and 
ARI, the most effective combination of climatic and 
geographical variables consisted of latitude, mean and 
maximum temperature showing the closest resem-
blance to the clustering on the basis of LST-LCZ re-
lations. 

Discussion

The current study aimed to prove the relation between 
LST and LCZ and its possibility to be generalized to all 
cities around the world with different climatic zones 
and characteristics. Besides, a further step intended to 
determine the effective climatic and geographical fac-
tors as drivers of varying relationships.

For that, 25 cities all around the world with vari-
ous climatic conditions were selected based on the 
availability of appropriate satellite data and level zero 
data from WUDAPT. To retrieve the LST maps, the 
automated mapping algorithm (Avdan & Jovanovs-
ka, 2016) was applied. The satellite data used in this 
algorithm was downloaded from the USGS web-
site. For each city, four images each belonging to one 
season were applied as inputs to the algorithm. LCZ 

maps were generated based on the workflow of the 
WUDAPT by the use of its level zero datasets. Af-
ter acquiring both LST and LCZ maps the compari-
son among them was made with the Wilcoxon rank 
sum test indicating the existence of any meaningful 
connection. After investigating the LST-LCZ relation, 
finding effective climatic and geographical factors 
was targeted. Here, all combinations of 8 variables 
(total 255 cases) namely 1) Latitude, 2) Longitude, 3) 
Altitude, 4) Mean annual temperature, 5) Minimum 
temperature, 6) Maximum temperature, 7) Total pre-
cipitation and 8) Population density, were considered. 
To achieve the mentioned purpose, the result of the 
clustering based on the characteristics of the LST-LCZ 
relation was compared with the outcome of the clus-

Figure 6. The ten highest Rand and adjusted Rand indices decreasing from the left ro 
right based on the adjusted Rand index; the y and x axes, respectively, show the indices 

measures and the driving factor combinations. Numbers along the x-axis denote:  
1) Latitude, 2) Longitude, 3) Altitude, 4) Mean annual temperature,  

5) Minimum temperature, 6) Maximum temperature, 7) Total annual precipitation and  
8) Population density
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tering on the basis of the characteristics of each men-
tioned factor combination. The similarity between 
every two clusterings (LST-LCZ relation and each fac-
tor combination based-clustering) implied the most 
effective combination of the stated variables. Given 
that, all pairs of clusterings were compared based on 
the Rand (Rand, 1971) and adjusted Rand indices (Hu-
bert & Arabie, 1985).

The meaningful relation between LST and LCZ was 
proved in this research as well as in previous studies 
like Geletic et al. (2016), Gemes et al. (2016), Cai et al. 
(2017) and Bechtel et al. (2019), which all concluded 
a considerable connection between these two varia-
bles in their case study regions. Relation recognition 
in this study was upheld by the Wilcoxon rank sum 
test results, which in 96% of all LCZ pairs illustrated 
a meaningful and significant difference of LSTs. In-
significant differences among some LCZs, as well, in 
the case of air temperature, were reported previously 
by Stewart et al. (2014). There were overall 4 cities in 
which all pairs showed significant differences: Berlin, 
Khartoum, Moscow and Phoenix. Considering the 
two main built and natural types, 20% of all insignifi-
cant pairs were intra-natural and 17% were intra-built 
types; the rest of them (63% of all insignificant pairs) 
were inter-types. With analyzing the mean LST of 
each LST-LCZ relation cluster, it could be noted that 

the hottest zone in each cluster was large low-rise (8) 
followed closely by bare rock and paved (E), bare soil 
and sand (F) and lightweight low-rise (7). The coolest 
ones were the water (G) and dense tree (A). These re-
sults are more likely to be dependent on the albedo of 
the surface since the LST is in close connection with 
this factor. The albedo of the paved grounds either 
streets or the roof of the buildings according to their 
colour is lower which causes higher LST. Although 
the wetness of the surface is another significant factor 
in LST measurements, with regard to the average LST 
throughout four seasons used in this study, this factor 
was considerably negated. 

In the case of finding the most effective climatic 
and geographical variables, the RI and ARI were used. 
According to these indices, the clustering based on the 
latitude, mean and maximum temperature showed 
the closest resemblance to the clustering on the ba-
sis of LST-LCZ relations. Although the ARI showed a 
weak measure (0.303), this combination was the high-
est among all. Therefore, additional variables, besides 
those used in this research, should be considered in fu-
ture studies to achieve a more comprehensive insight 
into drivers of LST-LCZ relationships. Urbanization 
characteristics and albedo indices of cities according 
to the essence of LST and LCZs are recommended by 
the authors to be included in future studies. 
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Appendix 1:  
The land surface temperature and local climate zone maps for all case study cities alphabetically ordered



Mehdi Gholami Rostam,  
Christoph Beck

305Geographica Pannonica • Volume 23, Issue 4, 289–307 (December 2019) – Special Issue



Towards the Determination of Driving Factors  
of Varying LST-LCZ Relationships – a Case Study over 25 Cities

306 Geographica Pannonica • Volume 23, Issue 4, 289–307 (December 2019) – Special Issue



Mehdi Gholami Rostam,  
Christoph Beck

307Geographica Pannonica • Volume 23, Issue 4, 289–307 (December 2019) – Special Issue


