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Abstract

This paper focuses on one of the high resolution models used for weather forecasting at Kenya Meteor-
ological Department (KMD). It reviews the skill and accuracy of the Weather Research and Forecasting 
(WRF) - Environmental Modeling System (EMS) model, in simulating weather over Kenya. The study pe-
riod was March to May 2011, during the rainy season over Kenya. The model output was compared with 
the observed data from 27 synoptic stations spread over the study area, to determine the performance 
of the model in terms of its skill and accuracy in forecasting. The spatial distribution of rainfall and tem-
perature showed that the WRF model was capable of reproducing the observed general pattern espe-
cially for temperature. The model has skill in forecasting both rainfall and temperature over the study 
area. However, the model may underestimate rainfall of more than 10 mm/day and displace its loca-
tion and overestimate rainfall of less than 1 mm/day. Therefore, during the period of enhanced rainfall 
especially in the month of April and part of May the model forecast needs to be complemented by oth-
er models or forecasting methods before giving a forecast. There is need to improve its performance 
over the domain through review of the parameterization of small scale physical processes and more ob-
served data need to be simulated into the model.
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Introduction
Rainfall is the most important weather parameter in 
Kenya, and many other developing nations whose econ-
omy mainly depend on rain-fed agriculture (Muthama, 
et al., 2012). Extreme weather events are thus associat-
ed with huge socio-economic losses that can be avoided 
through provision of accurate and timely weather fore-
cast. The effects of severe weather are localized in most 
cases, calling for skillful forecast. However, the utility 
of the forecast depend on the skill of the model. There 

exist different weather forecasting models that perform 
differently from one locality to the other. This study as-
sesses the performance of the Weather Research and 
Forecasting model (WRF) to simulate weather over 
Kenya, focusing on temperature and rainfall. The main 
question to answer is, how well does WRF-EMS mod-
el accurately predict severe weather over Kenya? Re-
search on performance of models in weather prediction 
on daily, monthly and seasonal timescales has been the 
subject of many studies in East Africa Region, includ-
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ing Kenya. However, the WRF-EMS model has not re-
ceived adequate attention from researchers, particular-
ly in East Africa region. This may be because the model 
is used mainly for research rather than operational 
purposes in the region.

Observed tropical weather is the sum total of non-
linear interactions among quasi-stationary systems 
like the Inter-Tropical Convergence Zone (ITCZ), de-
pressions, anticyclones, and Hadley wind regimes; sys-
tems with low and high frequency variability includ-
ing the Indian Ocean Dipole (IOD), El-Niño Southern 
Oscillation (ENSO), tropical cyclones and Madden Ju-
lian Oscillations (MJOs); highly seasonal systems like 
monsoons (Mukabana, 1992); and local forcing from 
the influence of lakes, orographic features and urban 
complexes (Asnani, Kinuthia 1979). The challenge of 
dynamical forecasting lies, not only in precisely in-
corporating all relevant weather controls in the mod-
elling system, but also in the opposite interpretation 
of NWP products.

WRF has been used to simulate tornado over Lu-
dhiana in India, the model was able to simulate well 
all the favorable conditions for formation of a torna-
do (Mohantya, Litta, 2010). This shows that high res-
olution model can be reliably used for foresting high-
ly localized systems.

Despite the high-speed computers, inaccurate 
weather forecasts still being made due to errors from 
the chaotic nature of the atmosphere, the inexact 
equations of motions, and gaps in specifying the in-
itial state of the atmosphere. Lilly (1990) studied Nu-
merical Weather Prediction (NWP) and found that 
at high resolution, convection is explicitly resolved, 
meaning that clouds and precipitation are entirely 
represented through additional prognostic equations 
which account for the microphysical and thermo dy-
namical transformations associated with water phase 
changes. Moreover, high resolution allows for a much 
more detailed representation of the orographic forc-
ing known to play a major role at the mesoscale. There 
have been efforts in recent days to improve the accura-
cy of the forecasts, through the use of mesoscale mod-
el with high horizontal and vertical resolutions. This 
is because rainfall can only be predicted with accura-
cy using fine grid models.

Another major hurdle for mesoscale modeling is 
the verification of the direct model output against the 
observed. Observed data for small-scale weather phe-
nomena are either not available, unevenly distributed, 
or provide incomplete coverage. According to Cheru-
bini et al. (2002), the information contained in the ob-
servations may not give the same information as the 
model without some preconditioning. 

Previous model validation studies have used con-
ventional statistics to measure the similarity between 

observed and modeled data. Taylor (2001) character-
ized model performance using correlation, root mean 
square error (RMSE), and variance ratio. The study 
found ways to combine these three statistics in a sin-
gle diagram, resulting in nice graphical visualizations 
of model performance. Murphy, et al. (2004) intro-
duced a Climate Prediction Index (CPI), which meas-
ures the reliability of a model based on the composite 
mean square errors of a broad range of climate vari-
ables. 

Gitutu (2006) did a comparative verification of pre-
cipitation forecast over Kenya. He found out that the 
skill of the NWP model considered was high during 
the drier months as compared to the rainy season of 
March- May. He also noted that during the heavy pre-
cipitation the models under consideration under fore-
casted. Sakwa (2006), also assessed the skill of the 
High Resolution Regional Model (HRM) in simula-
tion of airflow and rainfall over East Africa, found 
that the model was able to simulate precipitation and 
airflow skillfully over East Africa with few cases of 
underestimation and overestimation.

Over East Africa, and especially Kenya few studies 
have been carried out on the performance of the WRF 
model. Zhang (2007) utilized the model and showed it 
could satisfactory simulate East Africa climate. It is in 
this background that this study analyses the skill and 
accuracy of WRF-EMS model over Kenya. 

Study area 
The area of focus for this study is Kenya, which lies 
within longitudes 34°E-42°E, and latitudes 5°N-5°S 
(Figure 1) with a total area of about 582650 km2. The 
country is positioned in East Africa bordering Soma-
lia to the east, Ethiopia to the north, Tanzania to the 
south, Uganda and Lake Victoria to the west, South 
Sudan to the North West, and the Indian Ocean to 
the southeast. The equator passes through the coun-
try in an east-west direction dividing the country into 
almost two equal parts.

The region has complex topographical features, 
which include the highlands and Great Rift Valley. 
The relief map of Kenya indicates that quite a large 
portion of the area lies around 1200 m above mean 
sea level (AMSL). Climate in Kenya vary considerably 
from place to place due to differences in topography 
and the presence of water bodies such as the Indian 
Ocean and Lake Victoria (Indeje, et al., 2001). Precipi-
tation is the parameter that has the highest space-time 
variability. On average, more than 800 mm of annu-
al rainfall is observed over areas bordering Lake Vic-
toria to the west, and the Indian Ocean to the east. 
The highlands of central Kenya also receive rainfall of 
more than 800 mm per year, with the northern and 
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eastern parts of Kenya, which is semi-arid, receive less 
rainfall.

Kenya experiences bimodal rainfall regime with the 
‘long rains’ season coming in March-May (MAM) and 
the ‘short rains’ being reported in September-Decem-
ber (SOND) (Yang, et al., 2015; Camberlin, Philippon 
2002; Mutai, Ward 2000; Ogwang, et al., 2015). These 
rainy season coincide with period of the year when 
the ITCZ is overhead at the equator (Anyah, Semazzi 
2006; Black, et al., 2003). The intervening periods are 
relatively dry. However, there are rainfall-enhancing 
mechanisms in the region which contribute to sub-
stantial rains over the western and coastal parts of 
East Africa in July/August. These mechanisms include 
the warm and moist Congo air mass, and the East Af-
rica low level jet (EALLJ) respectively (Ogallo, 1998). 

Model, data and methodology 

Weather Research and Forecasting (WRF) - 
Environmental Modeling System (EMS)
The Weather Research and Forecasting Environmen-
tal Modeling System (WRF-EMS) is a complete, full-
physics, state-of-the-science Numerical Weather Pre-
diction (NWP) package that incorporates dynamical 
cores from both the National Center for Atmospher-
ic Research (NCAR) Advanced Research WRF (ARW) 
and the National Centers for Environmental Predic-
tions’ (NCEP) Non- hydrostatic Mesoscale Model 
(NMM) releases into a single end-to-end forecasting 
system. Nearly every element of an operational NWP 
system has been integrated into the WRF-EMS, includ-
ing the acquisition and processing of initialization data, 
model execution, output data processing, and file mi-
gration and archiving. Even tools for the display of fore-
cast and simulation data are provided. Real- time fore-
casting operations are enhanced through the use of an 
automated process that integrates various fail-over op-
tions and the synchronous post processing and distri-
bution of forecast files (Robert, 2010).

Experimental design 
In this study, the model was integrated for a period 
of 90 days, starting at 0000 UTC of 1st March to 31st 
May of 2011. A single domain with 14 km spatial reso-
lution was configured. Initial conditions for the 14 km 
domain are derived from 6 h GFS Global Analyses at 
1.0° × 1.0° grids. Analysis fields, including temperature, 
moisture, geopotential height and wind, are interpo-
lated to the mesoscale grids by the WRF preprocess-
ing system (WPS). These derived fields are used as 
initial conditions for the present experiments. The ex-
perimental domain is 26.0–51.0 °E and 12.0 °S–12.0 °N. 
With a horizontal grid ranging from the Eastern At-
lantic to western Indian Ocean, all domains are cen-
tered over Kenya to represent the regional-scale circu-
lations and to resolve the complex flows in this region. 
For the microphysics scheme, Lin et al., 1989, scheme 
was used which is a sophisticated scheme that has 
ice, snow and graupel processes, suitable for real-da-
ta high-resolution simulations. Kain-Fritsch scheme 
which is a cumulus scheme was used, and it is deep 
and shallow convection sub-grid scheme using a mass 
flux approach with downdrafts and Convective Avail-
able Potential Energy (CAPE) removal time scale (Ta-
ble 1).

Table 1. WRF-EMS model physics and dynamics 
configurations for this study

Dynamics Non-hydrostatic

Model domain 12.0°S–12.0°N, 26.0–51.0°E

Primary Time Step 80 Seconds

Vertical Layers 45

Grid Dimension 202 × 171

Grid Spacing 14 km

Top of Model Atmosphere 50 mb

Map projection
Rotated latitude and 
longitude

Horizontal grid system Arakawa E-grid

Vertical coordinate
Terrain-following hybrid 
(sigma-pressure) vertical 
coordinate (38 sigma levels)

Radiation parameterization GFDL/GFDL

Land surface Noah Land Surface Model

Surface layer Physics Monin-Obukhov 

Cumulus Scheme Kain-Fritsch 

PBL Scheme Yonsei University scheme

Microphysics Scheme
Lin et al. scheme, for high 
spatial resolution

Data and methodology
Data used in this study is the model output and ob-
served data from 27 stations distributed throughout 
the country (Figure 2). The observed data was for dai-

Figure 1. Area of study, (a) Map of Africa showing the 
Kenya (shaded grey), (b) Map of Kenya [longitude 34°E - 
42°E and latidue 5°S - 5°N]
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ly data for three months (March- May) of 2011 and ob-
tained from KMD.

The method that was used in this study includes: 
the analysis of Correlation Coefficient (CC), Absolute 
Mean Error (AME), Root Mean Square Error (RMSE), 
Frequency Bias Index (FBI), Equitable Threat Score 
(ETS), and True Skill Statistic (TSS) and Percentage 
correct (PC).

Results

Performance of rainfall during the MAM,  
2011 season 
Rainfall during this season was highly depressed and 
poorly distributed, both in time and space in most 
parts of the country (Figure 3). Figure 3 shows that most 
of the station received less total rainfall as compared 
to their long term mean. Although the seasonal rain-
fall was characterized by long dry spells and low rain-
fall values in different parts of the country especially in 
April, a few rainfall storms were recorded during the 
period. The heaviest storm of 101.5 mm, 57.3 mm and 
76.6 mm was recorded at Embu station on 27th of April, 
4th and 7th of May, 2011 respectively. The second heaviest 
storm amounting to 100.6 mm and another one at 62.2 
mm were recorded at Machakos station on 18th and 19th 
of March, 2011. Other storms recorded during the sea-
son include 73.9 mm and 91.5 mm recorded at Voi and 
Kisumu on 24th and 31st of March 2011 respectively, and 
55.3 and 60.4 mm recorded at Meru and Kakamega on 
21st and 30th of April 2011 respectively.

The rainfall during of MAM 2011 season was de-
pressed, because of the prevailing cooler than aver-
age SSTs over the Eastern and Central Equatorial Pa-
cific Ocean, indicating that the moderate La Niña 
conditions still prevailed in the Pacific. Cooler than 
average SSTs occurred in the south west (SW) Equato-
rial Indian Ocean adjacent to the East African coast-
line. The cooler than average SSTs over the Eastern 
and Central Equatorial Pacific Ocean are associated 
with depressed rain (Nicholson, Selato 2000). Similar-
ly, cool south west (SW) Equatorial Indian Ocean re-

Figure 2. Study area showing the location of stations used 
in the study

Figure 3. The rainfall performance of March-May 2011 season (TOT - Total Rainfall, LTM - Long Term Mean)
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sults in negative Indian Ocean Dipole associate with 
depressed rainfall over the larger East Africa (Saji, et 
al., 1999; Black, et al., 2003; Funk, et al., 2008). Thus, 
the observed cool temperature patterns in the Pacif-
ic Ocean weakened the rainfall generating mecha-
nism that led to depressed rainfall over most parts of 
the country. The zonal arm of the rain-bearing sys-
tem; ITCZ, was generally diffuse and mainly overly-
ing northern Tanzania for most of the period.

Results from spatial analysis
The model did not perform well in simulation of tem-
perature as shown in Figure 4 and 7 giving plots of the 
observed temperature against the forecasted. Howev-
er, for rainfall, it is evident that WRF-EMS model was 
able reproduce the observed rainfall, except for some 
few stations where the model either underestimated or 
overestimated (Figure 5 and 6). 

Figure 4. The observed and forecasted temperature for March-May 2011 season (FOR- Forecasted, OBS - Observed)

Figure 5. The observed and forecasted rainfall for the March-May 2011 season
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Results from Assessment  
of Model Accuracy and Skill
The accuracy was assessed by using RMSE, AME and 
CC. The skill of the model was determined using cat-
egorical statistics that include: FBI, TSS, ETS and PC.

For correlation coefficient analysis, most stations 
recorded high correlation between the observed and 
forecasted rainfall in March as compared to April. 

This is because April is the peak rainfall month, and 
its contribution is from majorly by interaction be-
tween the meso-scale system and large scale systems.

The results for Absolute mean error (AME) and 
Root mean square error (RMSE) for most station had 
a value of less than 10, indicating that the model had 
a high accuracy in reproducing the observed rainfall 
and temperature (Table 2 and 3).

Figure 6. Spatial distribution of Rainfall for the March-May 2011 season 
(a) Observed Rainfall (b) Forecasted Rainfall

Figure 7. Spatial distribution of temperature for April 2011 (a) Observed 
temperature (b) Forecasted temperature

Table 2. Correlation Coefficient (CC), Absolute Mean Error (AME) and Root Mean Square Error (RMSE) for Rainfall for 
March, April and May

Months March April May

Station CC AME CC AME RMSE CC AME RMSE

Dagoretti 0.69 2.30 9.37 -0.02 0.58 5.01 0.22 4.30 5.37

Eldoret 0.50 0.06 1.92 0.46 0.23 7.01 0.36 3.84 3.04

Embu 0.62 0.60 1.57 0.12 7.31 20.93 -0.04 4.78 4.24

Garissa 0.00 0.07 0.27 -0.11 1.12 3.78 -0.05 0.76 2.03

JKIA 0.91 0.29 3.12 -0.10 0.35 2.12 0.16 1.22 2.39

Kakamega 0.92 1.90 3.83 0.08 3.39 13.83 0.38 0.16 3.11
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Months March April May

Station CC AME CC AME RMSE CC AME RMSE

Kericho 0.54 1.34 4.43 -0.12 3.87 9.42 0.27 0.48 2.88

Kisii 0.48 0.60 7.79 -0.09 3.74 18.92 0.43 4.71 2.96

Kisumu 0.35 2.36 5.81 0.16 0.18 5.44 -0.08 3.71 3.03

Kitale 0.52 2.22 4.90 0.82 3.62 8.09 0.10 0.29 2.75

Lamu 0.00 0.36 0.85 0.56 1.74 4.06 0.06 0.36 2.73

Lodwar -0.06 0.18 0.81 0.11 0.25 3.38 -0.02 0.03 1.11

Machakos 0.83 4.08 12.26 -0.02 0.32 1.11 0.59 1.17 1.99

Makindu 0.58 4.06 12.79 -0.06 0.43 0.99 -0.07 0.14 0.79

Malindi 0.23 0.57 4.36 0.22 14.35 17.89 0.23 10.35 4.27

Mandera 0.00 0.01 0.03 -0.08 1.78 7.03 -0.04 1.16 2.32

Marsabit 0.00 0.19 0.45 -0.05 2.17 7.66 -0.06 0.16 0.92

Meru 0.89 0.56 2.45 0.05 5.46 14.17 0.02 2.13 2.47

Mombasa -0.20 0.31 2.90 0.05 0.44 4.96 0.45 3.53 2.84

Moyale 0.00 0.99 2.15 0.30 8.83 12.67 0.37 2.51 2.79

Mtwapa -0.11 4.25 7.63 -0.02 2.60 10.58 0.67 1.29 3.13

Nakuru 0.91 0.90 3.06 -0.10 0.78 2.28 0.45 2.17 2.57

Narok 0.68 3.52 20.34 0.04 0.38 2.19 0.01 0.24 3.28

Nyeri 0.78 0.10 1.92 -0.01 2.49 5.89 -0.03 2.06 2.64

Thika 0.79 3.01 11.90 0.02 0.25 4.18 0.23 1.88 2.68

Voi -0.05 3.88 16.54 0.06 0.72 3.68 -0.06 1.81 2.55

Wajir 0.00 0.04 0.16 0.04 1.28 3.86 -0.06 0.01 0.46

Table 3. Correlation Coefficient (CC), Absolute Mean Error (AME) and Root Mean Square Error (RMSE) for Temperature 
for March, April and May

Months March April May

Station CC AME RMSE CC AME RMSE CC AME RMSE

Dagoretti 0.12 6.04 6.15 0.38 4.97 5.043 0.10 3.91 4.13

Eldoret 0.33 7.29 7.42 -0.08 5.42 6.369 -0.01 3.74 4.63

Embu 0.14 4.75 4.94 0.16 4.15 4.36 -0.18 9.38 9.44

Garissa 0.02 4.56 4.88 -0.07 5.11 8.074 0.36 4.41 4.56

JKIA 0.28 6.80 6.93 0.31 6.15 6.209 0.41 5.17 5.25

Kakamega 0.72 7.79 8.11 0.54 5.21 6.108 -0.12 1.75 21.1

Kericho 0.33 8.17 8.6 -0.08 9.16 9.376 -0.11 4.05 4.97

Kisii 0.47 5.45 5.76 0.43 3.64 4.006 0.30 3.38 3.82

Kisumu 0.66 5.78 6.07 0.40 3.82 4.214 0.43 3.11 3.46

Kitale 0.76 8.41 8.6 0.18 6.17 7.028 0.01 3.09 3.78

Lamu 0.38 2.09 1.95 0.21 -0.32 1.333 0.49 0.27 0.95

Lodwar 0.04 6.90 6.33 0.22 5.60 6.124 0.08 3.85 5.43

Machakos 0.08 3.06 3.87 0.53 2.61 2.715 0.47 2.84 2.95

Makindu 0.35 5.00 4.89 -0.27 5.02 5.205 0.38 5.51 5.61

Malindi 0.25 0.79 1.55 0.32 2.02 2.196 0.30 0.86 1.36

Mandera 0.01 19.79 25 -0.22 5.18 5.37 0.04 5.16 5.59

Marsabit -0.24 5.26 5.36 0.44 4.07 4.243 -0.18 5.33 5.54

Meru -0.08 4.61 4.81 0.10 3.39 3.54 0.49 3.98 4.06

Mombasa 0.11 2.72 2.66 -0.02 2.26 2.604 0.62 2.56 2.68

Moyale 0.10 4.65 4.98 0.14 1.97 3.71 0.02 0.03 1.84
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Results from measure of the skill
The results of FBI, ETS, TSS and HR, shows that, FBI 
for threshold of 0.5 mm/day and 1 mm/day is close to 
1 for most stations, indicating non biasness. For high-
er threshold of more than 3 mm/day the model under-
estimates the events while for 0.1 mm/day, it oversti-
mates (Table 4). 

The computation of ETS also shows that for thresh-
old of 0.1 mm, 0.5 mm and 1 mm/day, gave the highest 
ETS value, as compared to the higher thresholds of 3, 5, 
and 10 mm/day. This indicates that the model has high-
er skill in forecasting the lower thresholds. The same re-
sults were obtained when analysing TSS as that of ETS 
were depicted, where the model performs better at low-
er thresholds than higher thresholds (Table 5 and 6). 

Months March April May

Station CC AME RMSE CC AME RMSE CC AME RMSE

Mtwapa 0.14 0.46 1.28 -0.14 0.24 1.29 0.20 0.06 1.04

Nakuru 0.08 7.61 7.85 0.18 6.24 6.548 -0.23 5.61 6.04

Narok -0.10 8.10 8.51 0.03 7.14 7.321 0.00 5.00 5.3

Nyeri -0.27 5.72 6.58 0.49 4.05 4.149 -0.04 3.14 3.35

Thika -0.22 6.92 7.32 0.05 5.82 5.923 0.27 5.91 6

Voi 0.14 5.30 5.06 -0.12 4.17 4.631 0.53 4.91 5.02

Wajir -0.04 3.78 3.98 -0.29 3.01 3.425 0.22 3.80 3.93

Table 4. Frequency Bias Index (FBI) for Rainfall at different thresholds

Rainfall (mm/day) 0.1 0.5 1 3 5 10

Dagoretti 1.83 1.38 1.32 0.47 0.27 0.17

Eldoret 1.43 1.58 1.53 1.91 2.80 3.33

Embu 1.18 1.03 0.88 0.82 0.53 0.17

Garissa 0.75 0.43 0.60 0.00 0.00 0.00

JKIA 2.13 1.43 1.15 0.86 0.50 0.33

Kakamega 1.14 0.92 0.97 0.89 1.10 0.93

Kericho 1.22 1.24 1.23 0.70 0.73 0.71

Kisii 0.94 0.72 0.64 0.43 0.39 0.27

Kisumu 1.17 0.85 0.71 0.54 0.38 0.20

Kitale 1.24 1.19 1.27 0.90 0.68 0.90

Lamu 2.12 2.00 2.11 1.69 1.33 1.00

Lodwar 1.40 1.00 0.75 0.67 2.00 0.00

Machakos 2.79 0.64 0.36 0.43 0.43 0.25

Makindu 2.22 1.75 1.29 0.50 0.00 0.00

Malindi 2.07 2.03 2.19 2.85 2.94 4.20

Mandera 0.75 0.50 0.33 0.50 0.00 0.00

Marsabit 0.94 0.38 0.31 0.29 0.50 0.00

Meru 0.96 0.63 0.36 0.14 0.17 0.14

Mombasa 1.76 1.42 0.96 0.29 0.18 0.33

Moyale 2.24 2.50 3.55 4.43 5.20 7.50

Mtwapa 1.66 1.63 1.87 1.82 1.75 2.33

Nakuru 0.80 0.50 0.48 0.28 0.31 0.33

Narok 1.94 1.00 0.73 0.40 1.00 0.67

Nyeri 1.32 0.91 0.62 0.33 0.17 0.11

Thika 1.63 1.41 1.05 0.45 0.50 0.33

Voi 0.52 0.32 0.31 0.13 0.17 0.00

Wajir 0.78 0.57 0.17 0.00 0.00 0.00
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The hit rate was above 50%. These results closely agree 
with the findings by Pohl et al. (2011) that tested the ca-
pability of WRF in simulating the atmospheric water 
cycle over Equatorial East Africa. According to persist-

ing biases were recorded in too wet conditions such as 
Indian Ocean and too dry over eastern Kenya. Howev-
er, in most experiments, several configurations simu-
lated the regional climate with reasonable accuracy.

Table 5. Equitable Threat Score for Rainfall at different thresholds

Rainfall (mm/day) 0.1 0.5 1 3 5 10

Dagoretti 0.22 0.17 0.22 0.03 0.04 -0.01

Eldoret 0.24 0.23 0.29 0.18 0.14 0.15

Embu 0.15 0.24 0.21 0.14 0.07 0.14

Garissa 0.30 0.03 -0.03 0.00 0.00 0.00

JKIA 0.23 0.14 0.07 0.26 0.18 0.32

Kakamega 0.24 0.28 0.23 0.20 0.20 0.13

Kericho 0.35 0.28 0.23 0.12 0.12 0.22

Kisii 0.25 0.19 0.13 0.09 0.03 0.01

Kisumu 0.11 0.05 0.08 0.20 0.10 -0.02

Kitale 0.24 0.22 0.22 0.14 0.12 -0.01

Lamu 0.13 0.21 0.18 0.20 0.18 0.12

Lodwar 0.30 0.12 0.14 -0.02 -0.01 0.00

Machakos 0.11 0.14 0.03 0.08 0.08 0.24

Makindu 0.07 0.03 0.09 0.18 0.00 0.00

Malindi 0.14 0.12 0.15 0.11 0.12 0.06

Mandera 0.12 -0.03 -0.02 -0.02 0.00 0.00

Marsabit 0.08 0.07 0.09 -0.02 -0.01 0.00

Meru 0.11 0.04 0.07 0.04 0.05 0.13

Mombasa 0.09 0.13 0.17 0.10 -0.02 -0.02

Moyale 0.07 0.04 0.03 0.07 0.05 0.11

Mtwapa 0.09 0.07 0.04 0.09 0.14 -0.01

Nakuru 0.23 0.09 0.11 0.10 0.17 0.32

Narok 0.19 0.20 0.29 0.13 0.22 0.23

Nyeri 0.11 0.16 0.03 0.13 -0.02 -0.01

Thika 0.29 0.25 0.17 0.10 0.16 0.12

Voi 0.04 0.02 0.02 -0.01 -0.01 0.00

Wajir 0.10 0.07 0.06 0.00 0.00 0.00

Table 6. True skill statistics for Rainfall at different thresholds

Rainfall (mm/day) 0.1 0.5 1 3 5 10

Dagoretti 0.45 0.32 0.40 0.05 0.06 -0.01

Eldoret 0.43 0.45 0.54 0.42 0.44 0.56

Embu 0.26 0.39 0.34 0.24 0.10 0.17

Garissa 0.05 0.04 -0.04 0.00 0.00 0.00

JKIA 0.53 0.29 0.13 0.38 0.24 0.33

Kakamega 0.39 0.44 0.38 0.32 0.35 0.23

Kericho 0.49 0.43 0.37 0.21 0.20 0.33

Kisii 0.42 0.36 0.25 0.17 0.06 0.02

Kisumu 0.21 0.09 0.14 0.30 0.14 -0.03

Kitale 0.39 0.37 0.39 0.24 0.19 -0.02
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Discussion and conclusion 
The March to May, 2011 seasonal rainfall was highly 
depressed and poorly distributed, both in time and 
space over most parts of the country. The WRF-EMS 
model was able to reproduce the general spatial dis-
tribution pattern of the observed rainfall and tem-
perature. However, during the days with storms, the 
model displaced the location of the storm and it under 
estimated the rainfall amount, while overestimating 
in areas with low rainfall. The model simulated fair-
ly well the spatial distribution of temperature, though 
there were over estimation over a few location. The de-
ficiency in simulation of rainfall, also affect the tem-
perature, since temperature is dependent among oth-
er things on latent heat release.

Generally, the model performs well in forecasting 
both rainfall and temperature over Kenya. However, 
the accuracy in forecasting specified rainfall and tem-
perature thresholds decrease with increase in thresh-
old amount/level. WRF-EMS may be used with con-
fidence for predictions of rainfall and temperature in 
most of the study area. It may however fail to predict 
the occurrence of storm, especially over the coastal 
and western parts of the coountry. Therefore, there is 
need to improve the model’s performance over the do-
main area, through reviewing the parameterization of 
small scale physical processes.
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